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Abstract. This is a follow up to a paper by the author where the
disjointness relation for (the graphs of) definable functions from ωω
to ωω is analyzed. In that paper, for each a ∈ ωω we defined a
Baire class one function fGC

a : ωω → ωω which encoded a in a
certain sense. Given g : ωω → ωω, let Ψ(g) be the statement
that g is disjoint from at most countably many of the functions
fGC
a . We show the consistency strength of (∀g)Ψ(g) is at most
one inaccessible cardinal. We show that AD+ implies (∀g)Ψ(g).
Finally, we show that assuming large cardinals, (∀g)Ψ(g) holds in
models of the form L(R)[U ] where U is a selective ultrafilter on ω.

1. Introduction

We do not assume the Axiom of Choice in this paper unless explicitly
stated. Our base theory is ZF. In [7] we isolated a lemma about Tree-
Hechler Forcing. We review this as our Lemma 5.5 (the so called Main
Lemma). One immediate consequence of this lemma, which is the focus
of [6], is the following:

Theorem 1.1 (Generic Coding with Help). If M is a countable tran-
sitive model of ZF and x, y ∈ R are reals such that y ̸∈ M , then there
is some Tree-Hechler generic G over M such that x ∈ L[y,G].

The proof of the Generic Coding with Help Theorem has many inter-
esting consequences (which are explored in [6]), such as the following:

Corollary 1.2. Let M be any transitive model of ZF. Let ā be a set
of ordinals not in M but such that sup(ā) ∈ M . Then there is a G that
is set generic over M (which exists in a class forcing extension of V )
such that V ⊆ L[G][ā].

However in this paper we take a step back and consider how to apply
the Main Lemma to one area of descriptive set theory. Specifically,
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we apply it to uniformizations. Recall that given a binary relation
R ⊆ ωω × ωω such that

(∀x ∈ ωω)(∃y ∈ ωω) (x, y) ∈ R,

we call g : ωω → ωω a uniformization of R iff

(∀x ∈ ωω) (x, g(x)) ∈ R.

We will consider an edge case of this problem, where R is the comple-
ment of the graph of a function from ωω to ωω. In other words, we
have a function f : ωω → ωω and the problem is to find a function
g : ωω → ωω such that

f ∩ g = ∅
(the graphs of f and g are disjoint).

We show that there are several definable and uniform ways to map
every real a ∈ ωω to a function fa :

ωω → ωω such that if g : ωω → ωω
is a “definable” function such that fa ∩ g = ∅, then a is in a countable
and canonical set of reals associated to g (or rather, associated to an
∞-Borel code for g). We discuss two such mappings: one is a 7→ fPSP

a

which was explained to us by an anonymous referee, and a mapping
a 7→ fGC

a which was developed in [7] but restricted to projective func-
tions g there.

First, let us describe a very coarse version of the problem:

Definition 1.3. A family of functions {fa : a ∈ ωω} from ωω to ωω
indexed by ωω such that (a, x) 7→ fa(x) is Borel is called a Borel family.

Definition 1.4. Given functions f, g : ωω → ωω, we say that g avoids
f iff f ∩ g = ∅.

Definition 1.5. Fix a family F = {fa : a ∈ ωω} of functions from ωω
to ωω and a function g : ωω → ωω. We say that g cannot avoid F iff
{a : fa ∩ g = ∅} is countable. That is, g cannot avoid F iff g can avoid
only countably many functions in F .

Definition 1.6. Let Ψ be the statement that there is a Borel family
of functions from ωω to ωω that no function from ωω to ωω can avoid.

Question 1.7. In what models does Ψ hold, and what families witness
that Ψ holds?

Recall that the perfect set property (PSP) says that every uncount-
able set of reals contains a perfect subset. We will review this in
Section 3. The PSP holds in both the Solovay model and in any
model of AD. We show that the PSP implies that the Borel family
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{fPSP
a : a ∈ ωω} cannot be avoided by any function from ωω to ωω.

Hence the PSP implies Ψ.
So now we know that {fPSP

a : a ∈ ωω} cannot be avoided in the
Solovay model or in any model of AD. Similarly, we show by the Main
Lemma about Tree-Hechler forcing that in the Solovay model or in any
model of AD+, {fGC

a : a ∈ ωω} cannot be avoided by any function from
ωω to ωω.

On the other hand, we show in Corollary 2.3 that ZFC implies ¬Ψ.
We analyze that proof and conjecture in Section 4 that DC+Ψ implies
(∀r ∈ ωω) ω1 is inaccessible in L[r].

Thus, here is our conjecture regarding consistency strengths:

Conjecture 1.8. The following theories are equiconsistent.

1) ZFC+ ∃ an inaccessible cardinal;
2) ZF+DC+ PSP;
3) ZF+DC+ {fPSP

a : a ∈ ωω} cannot be avoided;
4) ZF+DC+ {fGC

a : a ∈ ωω} cannot be avoided;
5) ZF+DC+Ψ;
6) ZF+DC+Ψ for only projective g’s.

The equiconsistency of 1) and 2) is well-known: one direction uses the
Solovay model. We show in Section 3 that PSP implies {fPSP

a : a ∈ ωω}
cannot be avoided, so 2) actually implies 3). The consistency of 1)
implies the consistency of 4) using the Solovay model as we show in
Section 7. Each of 3) and 4) imply 5) trivially, and 5) trivially implies
6). Finally, that 6) implies there is an inner model with an inaccessible
cardinal is still a conjecture.

AD+ is an axiom which implies AD, the Axiom of Determinacy, and
it is open whether AD implies AD+. The axiom AD+ implies that
every set of reals (and hence every function from ωω to ωω) has a so
called ∞-Borel code C ⊆ Ord. We will define ∞-Borel codes soon.

We are also interested in the following question: given a Borel family
such as {fa : a ∈ ωω} and a “definable” function g, what is a canonical
description of a countable set S ⊆ ωω such that S contains {a ∈ ωω :
fa ∩ g = ∅}? For the family {fPSP

a : a ∈ ωω}, we have the following:

Theorem 1.9. Assume AD+. Let g : ωω → ωω be a function. Let
Y ⊆ Ord be an ∞-Borel code for g. Then for any a ∈ ωω,

[fPSP
a ∩ g = ∅] → a ∈ HOD{Y }.

For the {fGC
a : a ∈ ωω} family, we prove a sharper result using the

Main Lemma:
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Theorem 1.10. Assume AD+. Let g : ωω → ωω be a function. Let
Y ⊆ Ord be an ∞-Borel code for g. Then for any a ∈ ωω,

[fGC
a ∩ g = ∅] → a ∈ L[Y ].

Comparing the past two theorems, our intuition is that {fGC
a : a ∈

ωω} is “harder to avoid” than {fPSP
a : a ∈ ωω}. We compare versions

of the past two theorems but for projective functions g : ωω → ωω in
Section 9.

Finally, this work suggests defining the following two regularity prop-
erties: g : ωω → ωω is PSP-regular iff it cannot avoid {fPSP

a : a ∈ ωω},
and it is GC-regular iff it cannot avoid {fGC

a : a ∈ ωω}. Projective
Determinacy (PD) implies that every projective g : ωω → ωω is both
PSP-regular and GC-regular (by Section 9). By Theorem 1.9 and Theo-
rem 1.10 above, if g : ωω → ωω is in an inner model of AD+ containing
all the reals, then it is both PSP-regular and GC-regular. However,
there may be more PSP-regular and GC-regular functions. That is,
suppose there is a proper class of Woodin cardinals and CH holds.
Let U be a selective ultrafilter on ω. Now L(R)[U ] is a generic exten-
sion of L(R) (see [10] and [4]). Using an argument pointed out to us
by Paul Larson, the model L(R)[U ] also satisfies the PSP. Thus, every
g : ωω → ωω in L(R)[U ] is PSP-regular. Our last result is Theorem 10.6
that states that in this same model L(R)[U ], every g is GC-regular as
well.

Remark 1.11. There is a different type of information that the disjoint-
ness relation can capture. Namely, assume AD. Fix α < Θ, where Θ
is the smallest ordinal that ωω cannot be surjected onto. Then there is
a function f : ωω → ωω such that if g : ωω → ωω is any function that
satisfies g∩f = ∅, then g has Wadge rank > α. We can construct f by
diagonalizing over all functions of Wadge rank ≤ α: let ⟨hx : x ∈ ωω⟩ be
a logically simple enumeration of all continuous functions from ωω×ωω
to ωω. Let W ⊆ ωω be a set of Wadge rank α. For each x ∈ ωω, if
h−1
x (W ) is a function, define f(x) := h−1

x (W )(x). Otherwise, define
f(x) to be anything. Every Wadge rank ≤ α function from ωω to ωω
appears as some h−1

x (W ).
Since ωω ∼= ωω ⊔ ωω, we may combine this remark with Theorem 8.2

which we will prove. That is, assume AD+. For every α < Θ and for
every a ∈ ωω, there is a function fα,a : ωω → ωω such that whenever
g : ωω → ωω satisfies fα,a ∩ g = ∅, then

1) g has Wadge rank > α, and
2) a ∈ L[Y ] for any ∞-Borel code Y ⊆ Ord for g.
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1.1. ∞-Borel sets of reals. Here is a concept we will use several
times, so let us introduce it now:

Definition 1.12. A set X ⊆ ωω is ∞-Borel iff there is a pair (C,φ),
called an ∞-Borel code, such that C is a set of ordinals and φ is a
formula such that

X = {x ∈ ωω : L[C, x] |= φ(C, x)}.
A similar definition applies to relations R ⊆ ωω × ... × ωω. We abuse
language and call a set C ⊆ Ord an ∞-Borel code for X ⊆ ωω iff there
is a formula φ such that (C,φ) is an ∞-Borel code for X.

See [11] for more on ∞-Borel sets and AD+ in general.
We do not define a function g : ωω → ωω to be ∞-Borel iff its graph

is ∞-Borel: if C is an ∞-Borel code for the graph of g : ωω → ωω,
there is no guarantee that g(x) ∈ L[C, x]. This is the reason for the
following definition:

Definition 1.13. A function g : ωω → ωω is ∞-Borel iff there is a pair
(C,φ), called an ∞-Borel code, such that for all x ∈ ωω and n,m ∈ ω,

g(x)(n) = m :⇔ L[C, x] |= φ(C, x, n,m).

We abuse language and call C ⊆ Ord an ∞-Borel code for g : ωω → ωω
iff there is a formula φ such that (C,φ) is an ∞-Borel code for g.

We similarly define ∞-Borel codes for functions g : ωω → ωω× [ω]ω,
etc. We will sometimes be loose and write a code (C,φ) for the graph
of g, but we will always mean the more technical definition. Note that
if g : ωω → ωω is ∞-Borel with code C, then g(x) ∈ L[C, x] for all x.
Our strong definition of a function being ∞-Borel is justified because
if every A ⊆ ωω is ∞-Borel, then every g : ωω → ωω is ∞-Borel.

Example 1.14. Consider the function g : ωω → ωω defined by g(x) = x′,
where x′ is the Turing jump of x. This function is ∞-Borel with ∞-
Borel code the empty set (because x′ is definable in L[x]).

The following is important for us:

Fact 1.15. Assume AD+. Let X be a countable set of reals and let Y
be an ∞-Borel code for X. Then X ⊆ HOD{Y }.

Proof. See Fact 3.3 of [3]. □

2. Ψ is inconsistent with ZFC

Recall that Uniformization is the fragment of the Axiom of Choice
that states that given any R ⊆ ωω × ωω satisfying (∀x ∈ ωω)(∃y ∈
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ωω) (x, y) ∈ R, then there is a function u : ωω → ωω such that u ⊆ R.
We call u a uniformization for R, or say that R is uniformized by
u. Within this paper, we will not assume the Axiom of Choice unless
explicitly stated. ZF is our base theory.

Proposition 2.1. Uniformization + Ψ implies that if S ⊆ ωω is un-
countable, then it can be surjected onto ωω by a Borel function.

Proof. Because we are assuming Ψ, fix a Borel family {fa : a ∈ ωω}
that no function can avoid. Fix an uncountable set S ⊆ ωω. For each
x ∈ ωω, the function a 7→ fa(x) is Borel. We claim that for some
x ∈ ωω, the function a 7→ fa(x) surjects S onto ωω. Suppose this is
not the case. For each x ∈ ωω, the set Yx := ωω − {fa(x) : a ∈ S}
is non-empty. Apply Uniformization to get g : ωω → ωω such that
(∀x ∈ ωω) g(x) ∈ Yx. Then g is disjoint from fa for each a ∈ S.
Since S is uncountable, g avoids the family of fa functions, which is a
contradiction. □

In Section 3 we will recall that if an uncountable set S ⊆ ωω has a
perfect subset, then S can be surjected onto ωω by a Borel function.
This is another indication that Ψ may be related to PSP.

It is clear that Ψ is inconsistent with ZFC+¬CH, because given any
S ⊆ ωω of size ω1 < 2ω, there is a g disjoint from fa for each a ∈ S.
We will now show that Ψ is inconsistent with ZFC + CH as well. By
Proposition 2.1, every uncountable S ⊆ ωω can be surjected onto ωω by
a Borel function. Recall that add(B) is the smallest size of a collection
of meager sets of reals whose union is not meager (see [2] for more on
add(B), where it is called add(M)). We have ω1 ≤ add(B) ≤ 2ω. This
next proposition gives us our contradiction. Paul Larson pointed out
how to make the diagonalization not get stuck by using the meager
ideal.

Proposition 2.2. Assume ZFC + add(B) = 2ω. Then there exists
a size 2ω set S ⊆ ωω that cannot be surjected onto ωω by any Borel
function.

Proof. Because add(B) = 2ω, the union of < 2ω meager sets of reals is
meager. For each Borel function h and each y ∈ ωω, h−1(y) has the
property of Baire, so it is either comeager below a basic open set or
it is meager. There can be only countably many y such that h−1(y)
is comeager below some basic open set, because otherwise there would
be two that intersect.

We now begin the construction of S = {aα : α < 2ω}. Let ⟨hα : α <
2ω⟩ be an enumeration of all Borel functions from ωω to ωω. First, pick
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any y0 ∈ ωω such that X0 := h−1
0 (y0) is meager. This y0 will witness

that h0 does not surject S onto ωω. Now pick any a0 ∈ ωω −X0.
At stage α < 2ω, pick any yα ∈ ωω such thatXα := h−1

α (yα) is meager
and does not contain any aβ for β < α. This is possible because there
are only < 2ω many y such that h−1

α (y) contains some aβ for β < α,
and there are only ω many y such that h−1

α (y) is not meager. Then pick
aα ∈ ωω − {aβ : β < α} −

⋃
β≤α Xβ. When the construction finishes,

the set S will have size 2ω and for each α < 2ω, yα ̸∈ hα(S). □

Corollary 2.3. ZFC implies ¬Ψ.

Proof. Assume, towards a contradiction, that ZFC + Ψ is consistent.
Let us work within such a model. We previously gave a quick argument
that ¬CH implies ¬Ψ, so it must be that CH holds. Thus add(B) = 2ω

holds. We also have Uniformization (because of the Axiom of Choice)
and Ψ. Thus the hypothesis of the previous two propositions are sat-
isfied. However, the conclusions of these propositions contradict one
another. □

Remark 2.4. Miller [14] has shown that in the iterated perfect set
model, in which ω1 = add(B) < ω2 = 2ω, every size ω2 set S ⊆ ωω
can be surjected onto ωω by a continuous function. The iterated per-
fect set model is obtained by starting with a model of CH and then
adding ω2 many Sacks reals by a countable support iteration. This
leads us to the following question:

Question 2.5. Is it consistent with ZFC that there is a Borel family
{fa : a ∈ ωω} such that every g : ωω → ωω is disjoint from only < 2ω

of the fa functions? In such a model we would need ¬CH.

3. PSP implies Ψ

An anonymous referee has pointed out a certain family

{fPSP
a : a ∈ ωω}

which witnesses Ψ when we assume the PSP. We will describe that in
this section.

Fix a computable bijection from ω to <ωω so that we may talk about
coding a perfect tree T ⊆ <ωω by a real x ∈ ωω. The set of reals
through a perfect tree can be surjected onto ωω in a uniform way that
is Borel. We make this precise in the following lemma:

Lemma 3.1. There is a Borel function E : ωω × ωω → ωω such that
for each x ∈ ωω, if x codes a perfect tree Tx ⊆ ωω, then

{E(x, y) : y ∈ [Tx]} = ωω.
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Hence, there is an α < ω1 such that for every perfect set S ⊆ ωω, there
is a Σ0

α function from ωω to ωω that surjects S onto ωω.

Proof. Fix an x ∈ ωω that codes a perfect tree Tx. For each y ∈ [Ty],
let Dx(y) ∈ ω2 be the sequence of 0’s and 1’s such that for each n < ω,
Dx(y)(n) specifies whether y goes through the leftmost child of the n-th
splitting node of Tx along y or whether it goes through a different child.
Now for a fixed y, Dx(y) can be considered as a sequence of s0 many
zeros, followed by a one, followed by s1 many zeros, followed by a one,
etc. Define E(x, y) = ⟨s0, s1, ...⟩. One can verify that E“({x}× [Tx]) =
ωω and also that the function E is Borel. □

Remark 3.2. Let X = (ωω)n for some n. Let Γ be a pointclass. Suppose
there is a set U ⊆ ωω × X such that for each B ⊆ X in Γ, there is a
b ∈ ωω such that B = {y : (b, y) ∈ U}. Suppose also that U is in Γ.
Then we call U a universal set and we call b a code for B. For each
α < ω1, the pointclass Σ0

α has a universal set, so we may talk about
codes for Σ0

α sets.

Definition 3.3. Fix α < ω1 such that every perfect subset of ωω can
be surjected onto ωω by a Σ0

α function (such an α exists by the previous
lemma). For each a ∈ ωω, let fPSP

a : ωω → ωω be the function such
that given any x ∈ ωω, if x codes a perfect tree Tx ⊆ <ωω together with
a Σ0

α surjection sx : [Tx] → ωω, and a ∈ [Tx], then

fPSP
a (x) := sx(a).

Otherwise, fPSP
a (x) is the zero sequence.

We will define the fGC
a functions later. However, it will be useful at

this time to introduce the following notation:

Definition 3.4. Given g : ωω → ωω,

DPSP
g = {a ∈ ωω : fPSP

a ∩ g = ∅}

DGC
g = {a ∈ ωω : fGC

a ∩ g = ∅}.
The following will be used later:

Lemma 3.5. Let Γ be a pointclass containing all the Borel sets that
is also closed under recursive substitutions. Let g : ωω → ωω be in
Γ in the sense that the ternary relation “g(x)(n) = m” is in Γ. Let
{fa : ωω → ωω} be a Borel family. Let Dg := {a ∈ ωω : fa ∩ g = ∅}.
Then Dg is ∀ωω¬Γ.
Proof. A real a ∈ ωω is in Dg iff

(∀x ∈ ωω)(∀n ∈ ω)(∀m ∈ ω)[g(x)(n) = m → fa(x)(n) ̸= m].

□
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Here is the connection between the PSP and the fPSP
a functions:

Lemma 3.6. Fix a function g : ωω → ωω. Then DPSP
g cannot contain

a perfect subset.

Proof. Towards a contradiction, fix a perfect tree T such that [T ] ⊆
DPSP

g . Let x ∈ ωω be such that Tx = T and sx : [T ] → ωω is a

surjection. So by definition of the fPSP
a functions, we have {fPSP

a (x) :
a ∈ [T ]} = ωω. Thus, {fPSP

a (x) : a ∈ DPSP
g } = ωω. In particular

g(x) is in this set, so fix a ∈ DPSP
g such that fPSP

a (x) = g(x). Thus

fPSP
a ∩ g ̸= ∅, which contradicts a being in DPSP

g . □

Corollary 3.7. Assume the PSP. Then for each g : ωω → ωω, DPSP
g is

countable. Hence, Ψ holds as witnessed by the family {fPSP
a : a ∈ ωω}.

Proof. Assume, towards a contradiction, that there is some fixed g such
that DPSP

g is uncountable. Then DPSP
g has a perfect subset [T ]. This

contradicts the lemma above. □

So the PSP implies each DPSP
g is countable, but unfortunately we

have no proof that PSP implies each DGC
g is countable. Instead, we

have a proof that DGC
g is countable if either 1) AD+ holds (see Corol-

lary 8.3) or 2) we are in the Solovay model (see Corollary 7.2).
So it might seem that the family of fPSP

a functions is strictly better
than the family of fGC

a functions. However, we have the interesting
phenomenon that in nearly all instances where we can prove DGC

g to

be countable, we have a better bound on DGC
g than we do for DPSP

g .
We explore this more in Section 9.

Assuming AD+ we will prove

DPSP
g ⊆ HOD{Y }

whenever Y ⊆ Ord is an ∞-Borel code for g. On the other hand, still
with AD+, in another section we will prove

DGC
g ⊆ L[Y ]

whenever Y ⊆ Ord is an ∞-Borel code for g. The rest of the section
will focus on the former result.

Proposition 3.8 (ZF). Let Y be a set of ordinals. Let A ⊆ ωω be
OD{Y } in the model L(Y,R), where this model satisfies AD+. Then A
has an ∞-Borel code S ⊆ Ord in HOD{Y }.

Proof. This follows by Theorem 10.2.6 in [11]. □

We now have the following:
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Theorem 3.9. Assume AD+. Let g : ωω → ωω be a function. Let
Y ⊆ Ord be an ∞-Borel code for g. Then for any a ∈ ωω,

[fPSP
a ∩ g = ∅] → a ∈ HOD{Y }.

Proof. DPSP
g is OD{Y } in L(Y,R). So DPSP

g has an ∞-Borel code S ⊆
Ord in HOD{Y } by Proposition 3.8. By the PSP, DPSP

g is countable.

Thus DPSP
g ⊆ HOD{S} by Fact 1.15. Since S ∈ HOD{Y } we have

HOD{S} ⊆ HOD{Y }. Thus D
PSP
g ⊆ HOD{Y }. This is what we wanted

to show. □

4. Consistency Strength Lower Bound of ZF+Ψ

In Section 2 we gave an argument that ZFC implies ¬Ψ. That is,
ZFC implies that every Borel family {fa : a ∈ ωω} of functions from
ωω to ωω can be avoided by some function g : ωω → ωω. Using that
argument and being careful about the complexity of the objects being
produced, we will show in this section that V = L implies every Borel
family {fa : a ∈ ωω} of functions from ωω to ωω can be avoided by
some ∆1

2 function g : ωω → ωω. We will convert this into a conjecture
that ZF + DC + “there exists a Borel family that cannot be avoided”
implies that ω1 is inaccessible in L[r] for each r ∈ ωω.

Remark 4.1. Temporarily suppose Γ is a pointclass closed under quan-
tification of natural numbers. Let ∆ = Γ ∩ ¬Γ. Let g : ωω → ωω.
Consider the ternary relation “g(x)(n) = m”. Since

g(x)(n) ̸= m ⇔ (∃i ∈ ω) i ̸= m ∧ g(x)(n) = i,

we have that the ternary relation is in Γ iff it is in the dual ¬Γ. Since
g(x) = y ⇔ (∀n ∈ ω)[(∀m ∈ ω)m = y(n) → g(x)(n) = m],

if the ternary relation “g(x)(n) = m” is in Γ then the binary relation
“g(x) = y” is in Γ. Similarly, since

g(x)(n) = m ⇔ (∃y ∈ ωω)[g(x) = y ∧ y(n) = m],

g(x)(n) = m ⇔ (∀y ∈ ωω)[g(x) = y ⇒ y(n) = m],

if the binary relation is in Γ, then the ternary relation is in ∃ωωΓ and
∀ωωΓ. By what we said about the binary relation versus the ternary
relation, we have that the following are equivalent: Now fix an 1 ≤ n <
ω.

1) The binary relation “g(x) = y” is Σ1
n.

2) The binary relation is Π1
n.

3) The binary relation is ∆1
n.

4) the ternary relation “g(x)(n) = m” is Σ1
n
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5) the ternary relation is Π1
n

6) the ternary relation is ∆1
n.

Using a definition of [15], a well-ordering ≤ of ωω is called Γ-good
iff it is in Γ and whenever P is a binary Γ-relation, then the relations
Q(x, y) ⇔ (∃x′ ≤ x)P (x′, y) and R(x, y) ⇔ (∀x′ ≤ x)P (x′, y) are in
Γ. Note that if ≤ is Γ-good, then it is also ¬Γ-good. If V = L[r] for
some r ∈ ωω, then there is a Σ1

2(r)-good well-ordering of ωω of order
type ω1.

We will follow Remark 3.2 in the construction below. That is, for
α < ω1, we will use codes to talk about the c-th Σ0

α function hc :
ωω →

ωω, where c ∈ ωω. That is, we fix a universal Σ0
α set and use its sections

to get all the Σ0
α functions from ωω to ωω.

Lemma 4.2. Let ≤ be a Γ-good well-ordering of ωω. Let P ⊆ ωω× ωω
be a binary ∆-relation such that (∀y ∈ ωω)(∃x ∈ ωω)P (x, y). Then
the relation P ′ ⊆ ωω × ωω, defined by P ′(x, y) := x is the ≤-least real
satisfying P (x, y), is also a ∆-relation.

Proof. We can assume that the relation R(a, b) := (a = b) is ∆.

P ′(x, y) = P (x, y) ∧ (∀x′ ≤ x)[x′ ̸= x → ¬P (x, y)]

is Γ, because ¬P (x, y) is Γ (because P is ∆) and so x′ ̸= x → ¬P (x, y)
is Γ and so on. On the other hand,

¬P ′(x, y) := ¬P (x, y) ∨ (∃x′ ≤ x)[x′ ̸= x ∧ P (x′, y)]

is Γ, and so P ′ is ¬Γ. Thus P ′ is ∆. □

Definition 4.3. Fix a computable bijection from ω to ω × ω. Given
a relation R ⊆ ω × ω, we may use that bijection to encode R as a
subset of ω, which we can then identity as an element of ωω. In this
way, given a hereditarily countable set S, call c ∈ ωω an H(ω1) code
for S iff c codes a binary relation R ⊆ ω × ω that is isomorphic to
the ∈ relation on the transitive closure of S ∪ {S} such that if we let
πc : ⟨ω,R⟩ → ⟨TC(S ∪ {S}),∈⟩ be the isomorphism, then πc(0) = S.

Note that the set of all H(ω1) codes is a Π1
1 set. One point of

H(ω1) codes is to convert the quantification over the elements of a
fixed hereditarily countable S to a number quantifier using a code for
S as a parameter. Specifically, given an H(ω1) code c for a hereditarily
countable set S, the set S ∩ ωω of reals in S is ∆1

1(c).

Theorem 4.4. Fix 2 ≤ n < ω. Assume that CH holds. Assume
also there is a Σ1

n-good well-ordering ≤ of ωω of order type ω1. Fix
α < ω1. There is an uncountable set S ⊆ ωω along with a ∆1

n function
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H : ωω → ωω such that whenever c ∈ ωω is a code for a Σ0
α function

h : ωω → ωω, then H(c) ̸∈ h“S. That is, H witnesses that no Σ0
α

function surjects S onto ωω.

Proof. For each x ∈ ωω, by induction on the ≤-rank of x, define a pair
(ax, yx) ∈ ωω × ωω as follows. Also, note by induction that each pair
(ax, yx) is unique.

1) yx is the ≤-least real such that
1a) h−1

x (yx) is meager;
1b) (∀x′ ≤ x)x′ ̸= x ⇒ ax′ ̸∈ h−1

x (yx).
2) ax is the ≤-least real such that

2a) (∀x′ ≤ x)x′ ̸= x ⇒ ax ̸= ax′ ;
2b) (∀x′ ≤ x) ax ̸∈ h−1

x′ (yx′).

Before we proceed, let us prove that (ax, yx) exists. Fix x and suppose
we have defined (ax′ , yx′) for all x′ < x. We will find the (ax, yx). First,
we will define the yx that works. Since there are only countably many
y’s such that ax′ ∈ h−1

x (yx) (because {ax′ : x′ < x} is countable),
we can just throw out those y’s when trying to satisfy 1b). There
are only countably many y’s such that h−1

x (y) is not meager. This
is because hx is Borel so each h−1

x (y) is Borel. For each y such that
h−1
x (y) is not meager, we may pick a non-empty open set Uy such that

the symmetric difference between h−1
x (y) and Uy is meager. Now if

there are uncountably many y’s such that h−1
x (y) is non-meager, then

there must be two of the corresponding Uy’s whose intersection is non-
empty (and open). A contradiction easily follows. Thus, we can throw
away just countably many y’s to satisfy 1a). To summarize, we threw
away the countably many y’s that did not satisfy 1a) and we threw
away the countably many y’s that did not satisfy 1b), so we are left
with the cocountable set of y’s that satisfy both 1a) and 1b). We pick
yx to be the least such y.

Now we must pick an ax that satisfies 2). Getting ax to satisfy 2a) is
easy because {ax′ : x′ < x} is countable. That is, there is a cocountable
(and hence comeager) set of a’s that work for 2a). For 2b), since each
h−1
x′ (yx′) is meager, and the union of these for x′ ≤ x is also meager

and hence its complement is comeager. Thus the set of ax’s that work
for 2) is comeager, and so we can pick ax to be the ≤-least such one.

Let our set S be

S = {ax : x ∈ ωω}.

Note that by 2a), S is uncountable. Let H : ωω → ωω be the function

H(x) := yx.
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Wemust now do two things: show thatH witnesses that noΣ0
α function

surjects S onto ωω, and show H is ∆1
n. We will do the former first.

Note that by 1b) and 2b) together, we have

(∀x1, x2 ∈ ωω) ax1 ̸∈ h−1
x2
(yx2).

That is,

(∀x1, x2 ∈ ωω)hx2(ax1) ̸= yx2 .

Now fix a Σ0
α function h : ωω → ωω. We will show that h does not

surject S onto ωω. Fix an x2 ∈ ωω such that hx2 = h. We now have

(∀x1 ∈ ωω)hx2(ax1) ̸= yx2 .

So yx2 is not in the range of h ↾ S.
The last thing we must do is show H is ∆1

n. For each c ∈ ωω, let
Fc be the function x 7→ (ax, yx) restricted to {x : x ≤ c}. Since Fc is
hereditarily countable, it has an H(ω1) code. Let J : ωω → ωω be the
function defined by J(c) := the ≤-least H(ω1) code for Fc. Consider
the relation R ⊆ ωω× ωω defined by R(d, c) :=“d is an H(ω1) code for
Fc”. We will show that R is ∆1

n. It will follow that J is ∆1
n (by the

proof of Lemma 4.2), and so H is ∆1
n.

Note that the well-ordering ≤ is in fact∆1
n. In this paragraph we will

show that the relation R1 ⊆ ωω × ωω defined by R1(d, c) := “d ∈ ωω is
an H(ω1) code for {x : x ≤ c}” is ∆1

n. Quantifying over the reals in the
countable set coded by a d is a number quantifier, not a real quantifier.
So, “(∀x ∈ the set coded by d)x ≤ c” is ∆1

n. On the other hand,
“(∀x ≤ c)x ∈ the set coded by d” is ∆1

n because ≤ is Σ1
n-good and

Π1
n-good. This shows that the relation R1 is ∆

1
n. Similarly R2(d, c) :=

“d ∈ ωω is an H(ω1) code for a function from {x : x ≤ c} to ωω × ωω”
is ∆1

n.
We will now prove that “R(d, c) := d is an H(ω1) code for Fc is ∆

1
n”,

and this will complete the proof. Because ≤ is Σ1
n-good and Π1

n-good,
it suffices to show that 1) and 2) are ∆1

n. First, consider 1a). Each
set h−1

x (yx) is Borel, and we can uniformly get a code for this set from
x and yx. Given β < ω1, whether or not a code for a Σ0

β set codes a

meager set is certainly ∆1
n. Next, since “ax′ ̸∈ h−1

x (yx)” is ∆1
n and ≤ is

Σ1
n-good and Π1

n-good we have that 1b) is ∆1
n. So, the conjunction of

1a) and 1b) is ∆1
n. The property of being the ≤-least real that satisfies

a ∆1
n relation is ∆1

n, so it follows that 1) is ∆1
n.

Now “ax ̸= ax′” is certainly ∆1
n, so 2a) is ∆1

n because ≤ is Σ1
n-good

and Π1
n-good. Similarly, 2b) is ∆1

n. Now the conjunction of 2a) and
2b) is ∆1

n, and so 2) is ∆1
n as well. □
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Corollary 4.5. Fix 2 ≤ n < ω. Assume CH holds and there is a
Σ1

n-good well-ordering ≤ of ωω of order type ω1. Let {fa : a ∈ ωω} be a
Borel family of functions from ωω to ωω. Then there is a ∆1

n function
g : ωω → ωω that avoids the family.

Proof. Fix α < ω1 such that each function a 7→ fa(x) is Σ
0
α. Let S and

H be from the Lemma above. Define g : ωω → ωω as follows. There is
a Borel function x 7→ cx such that for each x ∈ ωω, the real cx is a code
for the function a 7→ fa(x). Fix such a function. Now for all x ∈ ωω,
we have H(cx) ̸∈ {fa(x) : a ∈ S}. Define g(x) := H(cx). We now have
for each a ∈ S that fa ∩ g = ∅. Thus since S is uncountable, g avoids
the family {fa : a ∈ ωω}. Also, one can check that g is in fact ∆1

n. □

Remark 4.6. Here are some ways to apply the corollary above. First,
V = L implies there is a Σ1

2-good well ordering of ωω of order type ω1.
Going up the large cardinal hierarchy, if LC is a large cardinal axiom
consistent with there being a Σ1

n-good well-ordering of ωω of order type
ω1 (for some fixed n < ω), then in such a model we have that for each
Borel family {fa : a ∈ ωω} of functions from ωω to ωω, there is a ∆1

n

function g : ωω → ωω that avoids the family. So for example, assuming
there are only finitely manyWoodin cardinals does not imply that every
projective function avoids {fPSP

a : a ∈ ωω}. See [19] for a discussion
of the mouse M#

n which has n ∈ ω Woodin cardinals but at the same
time a ∆1

n+2-good well-ordering of R.

We would like to show that if there is a Borel family of functions
that cannot be avoided by a projective function, then there is an inner
model with an inaccessible cardinal. However our argument relies on
the following conjecture:

Conjecture 4.7. Let {fa : a ∈ ωω} be a Borel family of functions. Let

x ∈ R be such that ω1 = ω
L[x]
1 . Let S ⊆ ωω be a set of reals that is in

L[x] and is uncountable there. Then if in L[x] there is a ∆1
2 function g

that is disjoint from fa ↾ L[x] for each a ∈ S, then there is a projective
function g+ : ωω → ωω that extends g (in V ) that is disjoint from fa
for each a ∈ S.

Theorem 4.8. Assume DC. Assume Conjecture 4.7. Assume there is
a Borel family {fa : a ∈ ωω} such that no projective function g : ωω →
ωω can avoid this family. Then (∀r ∈ ωω) r is inaccessible in L[r].

Proof. Fix a Borel family {fa : a ∈ ωω}. Fix b ∈ ωω such that the
function (a, x) 7→ fa(x) is ∆

1
1(b). Since we are assuming ZF + DC, the

statement (∀r ∈ ωω)ω1 is inaccessible in L[r] is equivalent to the state-

ment (∀r ∈ ωω)ω
L[r]
1 < ω1 [8]. We will prove the contrapositive. That
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is, fix r ∈ ωω such that ω
L[r]
1 = ω1. So we also have ω

L[r,b]
1 = ω1. We

will construct a projective function that is disjoint from uncountably
many of the fa functions (so the projective function avoids the family
of fa functions).

Note that in L[r, b], there is a Σ1
2-good well-ordering of ωω of order

type ω1. Apply Corollary 4.5 above in L[r, b] to get S ⊆ ωω ∩ L[r, b]
uncountable (in L[r, b]) and let g ∈ L[r, b] be ∆1

2 (in L[r, b]) such that
g is disjoint (in L[r, b]) from each fa for a ∈ S. By Conjecture 4.7 fix
a projective function g+ : ωω → ωω (in V ) that is disjoint (in V ) from
fa for each a ∈ S. Thus, the projective function g+ avoids the family
{fa : a ∈ ωω} which is what we wanted to show. □

Corollary 4.9. Assume DC. Assume Conjecture 4.7. Then Ψ implies
that (∀r ∈ ωω) ω1 is inaccessible in L[r].

5. fGC
a and H

In this section we will review the technology of the Generic Coding
with Help method. A key ingredient is a classical technique for gen-
erating an infinite subset of ω that is computable from every infinite
subset of itself (such a set is called introreducible). We review this first:

Proposition 5.1. Let X ⊆ ω. There is an infinite Y ⊆ ω such that
X is computable from every infinite subset of Y . Moreover, Y can be
taken to be Turing equivalent to X.

Proof. Let χ : ω → 2 be the characteristic function ofX. Let p0, p1, p2, ...
be the increasing enumeration of all the prime numbers. Let Y ⊆ ω

be the set of all numbers of the form p
χ(0)
0 p

χ(1)
1 ...p

χ(n)
n for all n ∈ ω.

Then Y is as desired. This encoding trick is sometimes called “stutter-
ing”. Indeed, we can see that given any m ∈ Y , by finding the prime
factorization of m we can read off an initial segment of χ. If we have
infinitely many such m’s, then we can recover all of χ. It is not hard
to see that X and Y are Turing equivalent. □

Once and for all, fix a Borel function that maps each real a ∈ ωω to
an infinite set Aa ⊆ ω such that 1) a and Aa are Turing equivalent and
2) Aa is computable from every infinite subset of itself. Now for each
a ∈ ωω, we will define the function fGC

a : ωω → ωω.

Definition 5.2. Fix a computable function θ : ω → ω such that

(∀m ∈ ω) θ−1(m) is infinite.

Given an a ∈ ωω, let ea : ω → Aa be the strictly increasing enumeration
of Aa. Let ηa : Aa → ω be the function θ ◦ e−1

a .
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Note that for each m ∈ ω, η−1
a (m) ⊆ Aa is infinite.

Definition 5.3. The function fGC
a : ωω → ωω is defined as follows:

Given x = ⟨x0, x1, ...⟩ ∈ ωω, let i0 < i1 < ... be the indices i such that
xi ∈ Aa. Define fGC

a to be

fGC
a (x) := ⟨ηa(xi0), ηa(xi1), ...⟩.

If there are only finitely many indices i such that xi ∈ Aa, then define
fGC
a (x) to be all 0’s after these finitely many indices.

Remark 5.4. Note that (a, x) 7→ fGC
a (x) is Borel.

To see how the coding works, consider a node t ∈ <ωω. Let n ∈ ω be
the number of l ∈ Dom(t) such that t(l) ∈ Aa. All x ∈ ωω that extend
t agree up to the first n values of fa(x), but not at the (n+1)-th value.
By extending t by one to get t⌢k for some k ∈ Aa, we can decide the
(n + 1)-th value of fa(x) to be anything we want. Even if there is a
finite set S of k which we are not allowed to pick, we can still create a
t⌢k where the (n+ 1)-th value of fa(x) is anything we want.

The poset H, a variant of Hechler forcing, is equivalent to the forcing
which consists of trees T ⊆ <ωω with co-finite splitting after the stem,
where the ordering ≤ is reverse inclusion. We present H as consisting
of pairs (t, h) such that t ∈ <ωω and h : <ωω → ω, where t specifies
the stem and h specifies where each node beyond the stem has a final
segment of successors. That is, we have (t′, h′) ≤ (t, h) iff h′ ≥ h
(everywhere domination), t′ ⊒ t, and for each n ∈ Dom(t′)−Dom(t),

t′(n) ≥ h(t′ ↾ n).

Given a set A ⊆ ω, there is also a stronger ordering ≤A defined by
(t′, h′) ≤A (t, h) iff (t′, h′) ≤ (t, h) and for each n ∈ Dom(t′)−Dom(t),

t′(n) ̸∈ A.

Informally, q ≤A p iff q ≤ p and the stem of q does not “hit” A any
more than p already does. We will also use the main lemma from [7],
which tells us a situation where we can hit a dense subset of H by
making a ≤A extension. By an ω-model we mean a model of ZF that
is possibly ill-founded but whose ω is well-founded (and so equal to the
true ω). Moreover, this next lemma only needs M to satisfy a fragment
of ZF.

Lemma 5.5. (Main Lemma) Let M be an ω-model of ZF and D ∈
PM(HM) a set denseM in HM . Let A ⊆ ω be infinite and ∆1

1 in every
infinite subset of itself, but A ̸∈ M . Then

(∀p ∈ HM)(∃p′ ≤A p) p′ ∈ D.
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6. Abstract fGC
a Theorem

The point of this next theorem is that if a model M of ZF can
understand a function g : ωω → ωω on all its generic extensions by
the H poset, and if a ∈ ωω − M , then we can build a real x that is
H-generic over M such that fa(x) = g(x). This is proved using the
Generic Coding with Help method described in the previous section.

Theorem 6.1. (ZF) Let M be a transitive model of ZF such that
PM(HM) is countable. Let g : ωω → ωω. Let τ̇ be an HM -name
for a function from ωω × ω to ω such that for every G ⊆ HM that
is HM -generic over M , if we let x =

⋃
{t : (∃h) (t, h) ∈ G}, then

(∀n ∈ ω) τ̇G(x)(n) = g(x)(n). Then for all a ∈ ωω,

[fa ∩ g = ∅] ⇒ a ∈ M.

Proof. Fix a and assume a ̸∈ M . We must construct an x ∈ ωω such
that fa(x) = g(x). Since a and Aa are Turing equivalent, we have
Aa ̸∈ M , which allows us to apply Lemma 5.5, the Main Lemma.
By hypothesis, PM(HM) is countable, so fix an enumeration ⟨Dn ∈
PM(HM) : n ∈ ω⟩ of the dense subsets of HM in M .

We will construct a generic G for HM over M . Let ẋ be the canonical
name for x. The forcing extension will be M [G] = M [x].

First, apply Lemma 5.5 to get p0 ≤Aa 1 such that p0 ∈ D0. Next,
apply Lemma 5.5 to get p′0 ≤Aa p0 and m0 ∈ ω such that

p′0 ⊩ τ̇(ẋ)(0) = m̌0.

Now we have that p′0 ≤Aa p0 ≤Aa 1 and so we have that none of the
numbers on the stem of p′0 are elements of A. That is, p′0 has “not
hit A yet”, and so our final value of fa(x)(0) can be anything. Now if
we let k ∈ A, we can extend p′0 so that the new stem is Stem(p′0)

⌢k
and this will define fa(x)(0). So, extend the stem of p′0 by one to get
p′′0 ≤ p′0 in a way to ensure that fa(x)(0) = m0.

Next, apply Lemma 5.5 to get p1 ≤Aa p′′0 such that p1 ∈ D1. Next,
apply Lemma 5.5 to get p′1 ≤Aa p1 and m1 ∈ ω such that

p′1 ⊩ τ̇(ẋ)(1) = m̌1.

Next, extend the stem of p′1 by one to get p′′1 ≤ p′1 in a way to ensure
that fa(x)(1) = m1.

Continue like this infinitely. Since we have constructed a generic G
over M , we have that for each i < ω,

M [x] |= τ̇G(x)(i) = mi.

So by the hypothesis on τ̇ , we have

g(x)(i) = mi
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for all i. On the other hand, we have ensured that for each i < ω,

fa(x)(i) = mi.

Thus, fa(x) = g(x). Hence, fa and g do not have disjoint graphs, which
is what we wanted to show. □

7. {fGC
a : a ∈ ωω} Cannot Be Avoided In The Solovay Model

In this section we will show that {fGC
a : a ∈ ωω} cannot be avoided

in the Solovay model.

Theorem 7.1. Let M be an inner model of ZFC and let κ be a strongly
inaccessible cardinal in M . Assume V = M [G] where G is generic for
the Levy collapse of κ over M . Fix C ∈ ωOrd and let g : ωω → ωω be
such that there is a formula φ such that for each x ∈ ωω and n,m ∈ ω,

g(x)(n) = m ⇔ φ(C, x, n,m).

Then for all a ∈ ωω,

[fGC
a ∩ g = ∅] ⇒ a ∈ M [C].

Proof. Given any x ∈ ωω, by the factoring of the Levy collapse for
countable sets of ordinals (see Corollary 26.11 in [9]), V is a generic ex-
tension of M [C, x] by the Levy collapse of κ, and ω1 = κ is inaccessible
in M [C, x]. Since the Levy collapse is homogeneous, for any x, n,m we
have

φ(C, x, n,m) ⇔ M [C, x] |= 1 ⊩ φ(Č, x̌, ň, m̌).

Letting φ̃(C, x, n,m) be the formula 1 ⊩ φ(Č, x̌, ň, m̌), we have

g(x)(n) = m ⇔ M [C, x] |= φ̃(C, x, n,m).

This shows that M [C] can understand g on its forcing extensions by
the HM [C] forcing. Note also that PM [C](HM [C]) is countable, because
ω1 = κ is inaccessible in M [C]. We can now quote Theorem 6.1 using
the model M [C] and we are done. □

Note that in the theorem above, M [C] ∩ ωω is countable, so g can
be disjoint from only countably many of the fGC

a functions.

Corollary 7.2. Let κ be an inaccessible cardinal. Let G be generic for
the Levy collapse of κ over V . Then

HOD(ωOrd)V [G] |= (∀g : ωω → ωω) g cannot avoid {fGC
a : a ∈ ωω}.
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8. AD+ Implies {fGC
a : a ∈ ωω} Cannot Be Avoided

We showed that ZF+PSP implies Ψ in Section 3. Thus a consistency
strength upper bound for ZF +Ψ is one inaccessible cardinal, because
the PSP holds in the Solovay model. Also, AD implies the PSP, so Ψ
holds in all models of AD (and hence in all models of AD+). The way
we showed that the PSP implies Ψ is by showing that the PSP implies
that {fPSP

a : a ∈ ωω} cannot be avoided.
The point of this section is to show that AD+ implies that {fGC

a :
a ∈ ωω} cannot be avoided. Previously in Section 7 we showed that
{fGC

a : a ∈ ωω} cannot be avoided in the Solovay model.
We will use the following well known fact.

Fact 8.1. Assume there is no injection from ω1 into ωω. Let M be an
inner model of ZFC. Then ωV

1 is a strong limit cardinal in M . Since ℶω

is the first strong limit cardinal and |H| < ℶω, it follows that PM(HM)
is countable (in V ).

Theorem 8.2. Assume there is no injection from ω1 into ωω. Let
g : ωω → ωω be ∞-Borel with code C ⊆ Ord. Then for all a ∈ ωω,

[fGC
a ∩ g = ∅] ⇒ a ∈ L[C].

Hence, g cannot avoid {fGC
a : a ∈ ωω}.

Proof. Use Theorem 6.1 withM = L[C]. To see that the hypotheses are
satisfied, note that by the nature of ∞-Borel codes, M can understand
g on all of its forcing extensions. □

Corollary 8.3. Assume AD+. No function g : ωω → ωω can avoid
{fGC

a : a ∈ ωω}.

Proof. AD+ implies that every set of reals is ∞-Borel, and hence that
every g : ωω → ωω is ∞-Borel. Also AD+ implies AD, which in turn
implies there is no injection of ω1 into ωω. □

9. Comparing fPSP
a and fGC

a for Projective g

In [7] we showed the following, by considering ω-models of ZF and
by showing the contrapositive:

Theorem 9.1. Fix c ∈ ωω. Let g : ωω → ωω be ∆1
1(c). Then for any

a ∈ ωω,

[fGC
a ∩ g = ∅] ⇒ a ∈ ∆1

1(c).

Moving up the definability hierarchy to ∆1
2(c) functions g, we showed

the following. We will sketch the proof for reference.
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Theorem 9.2. Fix c ∈ ωω. Assume ω1 is inaccessible in L[c]. Let
g : ωω → ωω be ∆1

2(c). Then for any a ∈ ωω,

[fGC
a ∩ g = ∅] ⇒ a ∈ L[c].

Proof. Assume that a ̸∈ L[c]. We will show that g ∩ fGC
a ̸= ∅. By the

Shoenfield Absoluteness theorem, L[c] can understand g on all of its
forcing extensions. Thus by Theorem 6.1 we have that for any a ∈ ωω,

[fGC
a ∩ g = ∅] ⇒ a ∈ L[c],

which is what we want. □

We believe that the inaccessible cardinal from Theorem 9.2 can be
removed (and L[c] need not be countable). The assumption that ω1

is inaccessible in L[c] is only needed to get PL[c](HL[c]) to be count-
able. However, we can always force it to be countable and then we
can attempt to use the Shoenfield absoluteness theorem to get what
we want.

Moving up the projective hierarchy, in [7] we showed the following:

Theorem 9.3. Fix c ∈ ωω. Assume PD (Projective Determinacy).
Let g : ωω → ωω be ∆1

n(c) for some n ≥ 3. Then

[fGC
a ∩ g = ∅] ⇒ a ∈ Mn−2(c).

The proof of Theorem 9.3 uses that Mn−2(c) exists, that ω1 is inac-
cessible in this model, and that its forcing extensions by Tree-Hechler
Forcing H can compute Σ1

n(c) truth. Here, Mn(c) is a canonical inner
model with n Woodin cardinals and containing c. The requirement
that ω1 be inaccessible is only needed to get the collection of dense
subsets of H in the inner model to be countable in V .

Note that assuming PD, we have that a is ∆1
2 in c and a countable

ordinal iff a ∈ L[c]. For n ≥ 3, a is ∆1
n in c and a countable ordinal iff

a ∈ Mn−2(c) [19]. Thus, we may succinctly write the following:

Fact 9.4. Assume PD. Let 1 ≤ n < ω. Let g : ωω → ωω be a ∆1
n(c)

function for some fixed c ∈ ωω. Then fGC
a ∩ g = ∅ implies a is ∆1

n in
c and a countable ordinal.

Recall the definitions of DPSP
g and DGC

g from Definition 3.4. For
g : ωω → ωω in a (lightface) projective pointclass Γ, the situation is
recorded by the following table (assuming PD). The takeaway is that
depending on the complexity of g, sometimes we have a better bound
on DGC

g , and other times we have a better bound on DPSP
g .

For n odd, Cn is the largest countable Π1
n set. For n even, Cn is the

largest countable Σ1
n set, which is also that set of all reals that are ∆1

n



APPLYING GENERIC CODING WITH HELP TO UNIFORMIZATIONS 21

Table 1.

Γ DGC
g bound DPSP

g bound

∆1
1 DGC

g ⊆ Q1 DPSP
g ⊆ C1

∆1
2 DGC

g ⊆ C2 DPSP
g ⊆ C3

∆1
3 DGC

g ⊆ Q3 DPSP
g ⊆ C3

∆1
4 DGC

g ⊆ C4 DPSP
g ⊆ C5

∆1
5 DGC

g ⊆ Q5 DPSP
g ⊆ C5

... ... ...

in a countable ordinal. For n odd, Qn ⊇ Cn is the set of all reals that
are ∆1

n in a countable ordinal. The middle column of the table is by
Theorems 9.1, 9.2, 9.3.

The rightmost column comes from the following argument: Suppose
n is odd for simplicity. Suppose g is in the pointclass ∆1

n. So g is Σ1
n.

The set DPSP
g is ∀R¬Σ1

n = Π1
n by Lemma 3.5. Thus if the pointclass

Π1
n has the PSP and DPSP

g is not contained in the largest countable Π1
n

set, then DPSP
g must have a perfect subset. By PD we have that Π1

n

has the PSP and since DPSP
g does not contain a perfect subset, DPSP

g

must be contained in the largest countable Π1
n set (which is Cn).

Note that we can combine the fGC
a and fPSP

a families together into
one to get the best of both worlds:

Definition 9.5. Let {fBOTH
a : a ∈ ωω} be the family of functions from

ωω to ωω such that for any reals a, x ∈ ωω,

fBOTH
a (0⌢x) = fGC

a (x)

fBOTH
a (1⌢x) = fPSP

a (x)

and for i ≥ 2, define fBOTH
a (i⌢x) to be the zero sequence.

Let DBOTH
g := {a ∈ ωω : fBOTH

a ∩g = ∅}. See Table 2 for the bounds
for the DBOTH

g sets for projective g:

10. Functions in L(R)[U ]

The point of this section is to show, assuming large cardinals, that
functions g : ωω → ωω in models of the form L(R)[U ], where U is a
selective ultrafilter on ω, cannot avoid {fGC

a : a ∈ ωω}. Additionally,
we will recall that such models satisfy the PSP, and so functions in
these models also cannot avoid {fPSP

a : a ∈ ωω}.
The significance of Lemma 10.2 that is soon to come is that if the

PSP holds in an appropriate forcing extension on L(R), then no g in
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Table 2.

Γ DBOTH
g bound

∆1
1 DBOTH

g ⊆ C1

∆1
2 DBOTH

g ⊆ C2

∆1
3 DBOTH

g ⊆ C3

∆1
4 DBOTH

g ⊆ C4

∆1
5 DBOTH

g ⊆ C5

... ... ...

that forcing extension can avoid {fGC
a : a ∈ ωω}. Note however that

Lemma 10.2 applies to the forcing over L(R) to add a Cohen subset of
ω1. However, in that forcing extension, there is a well-ordering of R,
so Ψ fails there.

The hypothesis of the next lemma follows from a proper class of
Woodin cardinals. This is because of the following fact:

Fact 10.1. Assume AC. Assume there is a proper class of Woodin
cardinals. Then the following hold:

1) Every set of reals in L(R) is universally Baire. Moreover, for
every universally Baire set A ⊆ R, the model L(A,R) satisfies
AD+ (Theorem 7.5 of [21]) and every set of reals in L(A,R) is
universally Baire (Theorem 7.4 of [21]).

2) Every universally Baire binary relation on ωω can be uniformized
by a universally Baire function [17].

Let us briefly discuss part of 1) for the interested reader. Assume
that we already have the result that a proper class of Woodin cardinals
implies ADL(R). Now assume that there is a proper class of Woodin
cardinals. Then in every forcing extension there is a proper class of
Woodin cardinals. Hence ADL(R) holds in every forcing extension. This
by [5] implies that every set of reals in L(R) is universally Baire.

Lemma 10.2. Assume that for each binary relation E on ωω in L(R),
E has a uniformization u such that L(u,R) |= AD+ (this holds if there
is a proper class of Woodin cardinals). Let Q ∈ L(R) be a forcing that
does not add reals (when forcing over L(R)) and whose underlying set
is ωω. Let ġ ∈ L(R) be such that (1 ⊩Q ġ : ωω → ωω)L(R). Then there
exists a set of ordinals C ⊆ Ord in an inner model of AD+ containing
all the reals such that (∀q ∈ Q)(∀a ∈ ωω)

(q ⊩Q fGC
a ∩ ġ = ∅)L(R) ⇒ a ∈ L[C, q].
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Proof. Since we can uniformize every binary relation on ωω that is in
L(R), let u : Q × ωω → Q × ωω be such that L(u,R) |= AD+ and
(∀q ∈ Q)(∀x ∈ ωω), if u(q, x) = (q′, y), then q′ ≤ q and

(q′ ⊩Q ġ(x̌) = y̌)L(R).

Since L(u,R) |= AD+, let (C,φ) be an ∞-Borel code for u in L(u,R).
That is, (∀q, q′ ∈ Q)(∀x, y ∈ ωω)

u(q, x) = (q′, y) ⇔ L[C, q, x, q′, y] |= φ(C, q, x, q′, y).

Note that by our convention for ∞-Borel codes for functions to ωω or
similar ranges, if u(q, x) = (q′, y), then q′, y ∈ L[C, q, x].
Now fix q ∈ Q. Assume that a ̸∈ L[C, q]. We will show that ¬(q ⊩Q

ġ ∩ f̌a = ∅)L(R). We will do this by constructing a q′ ≤ q and an
x ∈ ωω such that (q′ ⊩Q ġ(x̌) = fGC

a (x̌))L(R). Consider L[C, q]. The
x will be generic over this model by the forcing HL[C,q]. Then, setting
(q′, y) = u(q, x), we will have (q′ ⊩Q ġ(x̌) = y̌)L(R). At the same time,
we will construct x so that fGC

a (x) = y.
Let ẋ be HL[C,q]-name such that 1 ⊩ ẋ =

⋃
{t : (∃h) (t, h) ∈ Ġ},

where Ġ is the canonical name for the generic filter. That is, ẋ is a
name for the real x we will construct, where x = {t : (∃h) (t, h) ∈ Ġ}
where G is the generic filter we construct. We will now construct x
by building a generic filter for HL[C,q] over L[C, q]. Let q̇′, ẏ ∈ L[C, q]
be such that (1 ⊩H φ(Č, q̌, ẋ, q̇′, ẏ))L[C,q]. Then, letting q′ = (q̇′)x and
y = (ẏ)x be the valuations of these names with respect to the generic
x, we will have L[C, q, x] |= φ(C, q, x, q′, y), so u(q, x) = (q′, y), which
implies q′ ≤ q and q′ ⊩Q (ġ(x̌) = y̌)L(R).

Let ⟨Di : i < ω⟩ be an enumeration of the dense subsets of HL[C,q] in
L[C, q]. Let p0 ≤A 1 be in D0. Let p

′
0 ≤A p0 and m0 ∈ ω be such that

p′0 decides ẏ(0) to be m0. That is, (p
′
0 ⊩H y̌(0) = m̌0)

L[C,q]. Let p′′0 ≤ p′0
extend the stem of p′0 by one to ensure that fGC

a (x)(0) = m0.
Now let p1 ≤A p′′0 be in D1. Let p′1 ≤A p1 and m1 ∈ ω be such that

(p′1 ⊩H y̌(1) = m̌1)
L[C,q]. Let p′′1 ≤ p′1 extend the stem of p′1 by one to

ensure that fGC
a (x)(1) = m1.

Continue this procedure infinitely. The descending sequence of con-
ditions constructed yields a generic ultrafilter G for HL[C,q]. By the way
x = (ẋ)G was constructed, we have fGC

a (x) = mi for all i < ω. We also
have y(i) = mi for all i < ω. Finally, we have that (q′ ⊩Q ġ(x̌) = y̌)L(R).
This completes the proof. □

Observation 10.3. Assume that PSP holds. Then a forcing extension
that does not add reals satisfies PSP iff every uncountable set of reals
in the extension has an uncountable subset in the ground model. This
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is because every perfect set of reals in the extension is already in the
ground model.

We will use the tower number for the next lemma.

Definition 10.4. Given A,B ⊆ ω, we write A ⊇∗ B (and say A is
a superset mod finite of B) iff B − A is finite. A tower is a sequence
⟨Aα : α < λ⟩ of infinite subsets of ω (where λ is an ordinal) such that
(∀α < β < λ)Aα ⊇∗ Aβ. The tower number t is the length λ of the
shortest tower that cannot be end extended to a strictly longer tower.

In other words, the tower number t is the smallest length λ of a
tower ⟨Aα : α < λ⟩ such that there is no infinite B ⊆ ω such that
(∀α < λ)Aα ⊇∗ B. See [1] for a discussion of the tower number.
Paul Larson pointed out this next argument, along with using the

generic absoluteness of the theory of L(R).

Lemma 10.5. Assume AC. Assume ω1 < t. Let Q be the P (ω)/Fin
forcing. Then (1 ⊩Q PSP)L(R).

Proof. Fix Ṡ ∈ L(R) and q such that (q ⊩ Ṡ ⊆ ωω is uncountable)L(R).
We will construct a q′ ≤ q that forces (over L(R)) that Ṡ has an
uncountable subset in L(R). By induction, construct (in V ) a sequence
⟨(qα, bα) : α < ω1⟩ such that 1) the bα’s are distinct reals, 2) the qα’s
are decreasing with q ≥ q0, and 3) (qα ⊩ b̌α ∈ Ṡ)L(R) for each α < ω1.
Every countable initial segment of the sequence we are constructing will
be in L(R) (because L(R) contains every countable sequence of reals).
Note that we do not get stuck at any stage, and so can construct the
entire sequence. However note that the entire (length ω1) sequence
may not be in L(R) because L(R) may satisfy AD and hence have no
injection of ω1 into R.

Let q′ be a lower bound of the qα’s, which exists because they form a
decreasing, with respect to almost inclusion, sequence of infinite subsets
of ω, and this sequence cannot be maximal because ω1 < t. That
is, we construct q′ in V , however it must be in L(R) because L(R)
contains all the reals. Now let K = {b ∈ ωω : (q′ ⊩ b̌ ∈ Ṡ)L(R)}. Note
that K ∈ L(R). In V we can see that {bα : α < ω1} ⊆ K, so K
is uncountable (in V ). But then also K is uncountable in L(R). Now
note that (q′ ⊩ Ǩ ⊆ Ṡ)L(R). Also note that (q′ ⊩ Ǩ is uncountable)L(R)

because the forcing does not add any new countable sequences of reals.
Hence q′ forces that Ṡ has an uncountable subset that is in the ground
model L(R), which by the observation above finishes the proof. □
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Theorem 10.6. Assume AC. Assume there is a proper class of Woodin
cardinals. Let U be a selective ultrafilter on ω. Let g : ωω → ωω be in
L(R)[U ]. Then g cannot avoid {fGC

a : a ∈ ωω}.

Proof. Let Q be the P (ω)/Fin forcing. Since there is a proper class of
Woodin cardinals, the first order theory of L(R) cannot be changed by
any set sized forcing (see Theorem 7.22 of [20], also Theorem 3.1.12
in [12]). There is a forcing extension of V in which ω1 < t. By
Lemma 10.5, in that forcing extension we have (1 ⊩Q PSP)L(R). Thus,
in V we have (1 ⊩Q PSP)L(R).

Another consequence of a proper class of Woodin cardinals is that
an ultrafilter on ω is selective iff it is Q-generic over L(R) (see [4] and
[10]). Thus, we will show that every name ġ ∈ L(R) for a function
from ωω to ωω satisfies

L(R) |= 1 ⊩Q ġ cannot avoid {fGC
a : a ∈ ωω}.

Towards a contradiction, fix ġ ∈ L(R) and q ∈ Q such that

L(R) |= q ⊩Q {a : ġ ∩ f̌a = ∅} is uncountable.

Since L(R) |= q ⊩Q PSP, by the observation above fix a condition
q′ ≤ q and an uncountable set S ⊆ ωω in L(R) such that for all a ∈ S,

L(R) |= q′ ⊩Q [ġ ∩ f̌a = ∅].

Since there is a proper class of Woodin cardinals, Apply Lemma 10.2
to get the C ⊆ Ord described there. We have

(∀a ∈ S) a ∈ L[C, q′],

which is a contradiction because since L[C, q′] is an inner model of ZFC
inside a model of AD, ωω ∩ L[C, q′] is countable. □

11. Final Questions

We close with a few questions.

Question 11.1. Does AD imply that no g : ωω → ωω can avoid
{fGC

a : a ∈ ωω}?

More generally, we can ask the following:

Question 11.2. Does PSP imply that no g : ωω → ωω can avoid
{fGC

a : a ∈ ωω}?
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