The Halpern-Läuchli Theorem and an Indestructible Partition Relation

Dan Hathaway, joint with Natasha Dobrinen

University of Denver
Daniel.Hathaway@uvm.edu

October 16, 2018

Classical partition relation

Terminology: inaccessible means strongly inaccessible.
Given any $k<\omega$ and any coloring $c:[\mathbb{Q}]^{2} \rightarrow k$, there is an $X \subseteq \mathbb{Q}$ order isomorphic to \mathbb{Q} such that c uses ≤ 2 colors on $[X]^{2}$. That is,

$$
\mathbb{Q} \rightarrow[\mathbb{Q}]_{<\omega, 2}^{2}
$$

This is due to Laver.

The κ-rationals

Definition

Let κ satisfy $\kappa^{<\kappa}=\kappa$. The set of κ-rationals, written \mathbb{Q}_{κ}, is the unique κ-saturated linear order of size κ.

Question

In ZFC can we prove

$$
\mathbb{Q}_{\kappa} \rightarrow\left[\mathbb{Q}_{\kappa}\right]_{<\kappa,<\omega}^{2}
$$

for every inaccessible κ ?
Answer: no!

The classical result does not directly generalize

Why not?

Theorem (Hajnal and Komjáth [6])

Assume there are no Suslin trees of height ω_{1}. Then after performing Cohen forcing, there is a linear ordering θ of size ω_{1} such that for any linear ordering Ω, there is a coloring $c:[\Omega]^{2} \rightarrow \omega$ such that every subset of Ω order isomorphic to θ does not omit any color.

Corollary

There is a forcing \mathbb{K}, of size smaller than the first inaccessible cardinal, such that after forcing with \mathbb{K}, every inaccessible cardinal κ satisfies

$$
\mathbb{Q}_{\kappa} \nrightarrow\left[\mathbb{Q}_{\kappa}\right]_{\omega,<\omega}^{2} .
$$

\mathbb{K} just needs to force $\operatorname{MA}\left(\omega_{1}\right)$, and then add a Cohen real.

Rectangles not squares (a polarized partition relation)

Instead of asking for a set X such that the pairs $p \in[X]^{2}$ use few colors, we could ask for sets A, B such that the pairs $p \in A \times B$ use few colors.
$[X]^{2}$ is a "square" and $A \times B$ is a "rectangle".
Fact: given any $k<\omega$ and given any coloring $c:[\mathbb{Q}]^{2} \rightarrow k$, there are sets $A, B \subseteq \mathbb{Q}$ order isomorphic to \mathbb{Q} such that c uses 1 color on $A \times B$. That is,

$$
\binom{\mathbb{Q}}{\mathbb{Q}} \rightarrow\binom{\mathbb{Q}}{\mathbb{Q}}_{<\omega, 1}^{1,1}
$$

Uncountable rectangle partition relation

Let κ be an inaccessible cardinal. Let $(*)_{\kappa}$ be the partition relation

$$
\binom{\mathbb{Q}_{\kappa}}{\mathbb{Q}_{\kappa}} \rightarrow\binom{\mathbb{Q}_{\kappa}}{\mathbb{Q}_{\kappa}}_{<\kappa, 2!}^{1,1}
$$

Notice we are saying we can cut down to 2 colors, not 1 . This is the best possible when $\kappa>\omega$ (see [10]).
$\mathrm{HL}^{t c}(2,<\kappa, \kappa)$ is a certain Ramsey theoretic statement.

Theorem (Zhang [10])

Let κ be inaccessible and assume $\mathrm{HL}^{t c}(2,<\kappa, \kappa)$ holds. Then $(*)_{\kappa}$ holds.

Theorem (Zhang [10])

Assume that κ is measurable in the forcing extension to add $\left(2^{\kappa}\right)^{+}$many Cohen subsets of κ. Then $\mathrm{HL}^{t c}(2,<\kappa, \kappa)$ holds (in the ground model).

Main theorem

Here is our main contribution:

Theorem (Dobrinen and H. [2])

Let κ be inaccessible. Assume $\mathrm{HL}^{\text {tc }}(2,<\kappa, \kappa)$ holds. Then it still holds after performing any forcing of size $<\kappa$.

Corollary

There is a model of ZFC with an inaccessible cardinal κ such that $(*)_{\kappa}$ is true after performing any forcing of size $<\kappa$.

So the rectangle partition relation $(*)_{\kappa}$ can be made indestructible with respect to small forcings, as opposed to the square version which cannot (by the Hajnal and Komjáth result).

$\mathrm{HL}^{\text {tc }}, \mathrm{HL}$, and SDHL

$\mathrm{HL}^{t c}$ has two simpler relatives: HL and SDHL.
We will not define $\operatorname{HL}^{\text {tc }}(2,<\kappa, \kappa)$ (see [10] for a definition).
For an inaccessible $\kappa, \mathrm{HL}^{t c}(2,<\kappa, \kappa)$ implies $(\forall \sigma<\kappa) \mathrm{HL}(2, \sigma, \kappa)$.
For an inaccessible κ and any nonzero $\sigma<\kappa, \operatorname{HL}(2, \sigma, \kappa)$ is equivalent to $\operatorname{SDHL}(2, \sigma, \kappa)$.

We will define $\operatorname{SDHL}(2, \sigma, \kappa)$ on the next slide.
The proof that "HL ${ }^{\text {tc }}(2,<\kappa, \kappa)$ " cannot be broken by a small forcing is similar to the proof that " $(\forall \sigma<\kappa) \operatorname{SDHL}(2, \sigma, \kappa)$ " cannot be broken by a small forcing, just with extra complications. We will prove the SDHL version to illustrate the method.

A word about proving HL

$\mathrm{HL}(d, \sigma, \omega)$ can be proved by induction on $d<\omega$（see［9］）．The successor step involves a fusion argument．This cannot be generalized to the $\kappa>\omega$ case because the intersection of a decreasing sequence of regular trees may not be regular．

There is another proof of $\mathrm{HL}(d, \sigma, \omega)$（see［3］）which adds many Cohen reals by forcing，and uses an ultrafilter in the extension to make selections． This generalizes to the $\kappa>\omega$ case if we assume that κ is measurable in the extension：

Theorem（Dobrinen and H．［1］）

Let $\lambda>\kappa$ satisfy $\lambda \rightarrow(\kappa)_{\kappa}^{d}$ ．Assume κ is measurable in the forcing extension where we add λ many Cohen subsets of κ ．Then $\operatorname{HL}(d, \sigma, \kappa)$ holds（in the ground model）．
（Woodin，see［4］for a proof）：if GCH holds and κ is $(\kappa+d)$－strong，then there is a forcing extension in which κ is measurable and remains measurable after adding $\lambda=\kappa^{+d}$ Cohen subsets of κ ．．三人，引ac

Some definitions

Definition

Let κ be a cardinal. A tree $T \subseteq{ }^{<\kappa} \kappa$ is regular iff

1) it is perfect,
2) every maximal branch has length κ, and
3) it is a κ-tree (every level $T(\alpha):=T \cap^{\alpha} \kappa$ of T has size $<\kappa$).

Note: If κ is regular and there is a regular κ-tree, then κ is inaccessible.

Definition

Given sets $T_{0}, T_{1} \subseteq{ }^{<\kappa} \kappa$, the set $T_{0} \otimes T_{1}$ consists of all the pairs $\left\langle t_{0}, t_{1}\right\rangle \in T_{0} \times T_{1}$ such that t_{0} and t_{1} have the same length.

Definition

Given sets $A, D \subseteq{ }^{<\kappa} \kappa$, we say that D dominates A iff each $a \in A$ is extended by some $d \in D$.

A definition of SDHL

SDHL stands for "Somewhere Dense Halpern-Läuchli".

Definition

Let $0<\sigma<\kappa$ be cardinals. $\operatorname{SDHL}(2, \sigma, \kappa)$ is the statement that given any regular trees $T_{0}, T_{1} \subseteq{ }^{<\kappa} \kappa$ and any coloring $c: T_{0} \otimes T_{1} \rightarrow \sigma$, there are levels $I<I^{\prime}<\kappa$, a sequence of nodes $\left\langle t_{i} \in T_{i}(I): i<2\right\rangle$, and a sequence of sets $\left\langle X_{i} \subseteq T_{i}\left(I^{\prime}\right): i<2\right\rangle$ such that each X_{i} dominates $\operatorname{Succ}_{T_{i}}\left(t_{i}\right)$ and c is constant on $X_{0} \otimes X_{1}$.

SDHL version of main theorem: part 1

Theorem 1 (Dobrinen and H. [2])

Let $0<\sigma<\kappa$. Let \mathbb{P} be a forcing of size $<\kappa$. Then $\operatorname{SDHL}(2, \sigma \cdot|\mathbb{P}|, \kappa)$ implies $1 \Vdash_{\mathbb{P}} \operatorname{SDHL}(2, \sigma, \kappa)$.

Given a name \dot{T} for a regular tree, let $\operatorname{Der}(\dot{T})$ be the set of all equivalence classes of pairs $(\dot{\tau}, \alpha)$ such that

$$
1 \Vdash_{\mathbb{P}}(\dot{\tau} \in \dot{\tau} \text { and Length }(\dot{\tau})=\check{\alpha})
$$

where $\left(\dot{\tau}_{1}, \alpha_{1}\right) \cong\left(\dot{\tau}_{2}, \alpha_{2}\right)$ iff $1 \Vdash_{\mathbb{P}}\left(\dot{\tau}_{1}=\dot{\tau}_{2}\right)$. Order $\operatorname{Der}(\dot{T})$ by $\left[\left(\dot{\tau}_{1}, \alpha_{1}\right)\right] \leq\left[\left(\dot{\tau}_{2}, \alpha_{2}\right)\right]$ iff $1 \Vdash_{\mathbb{P}} \dot{\tau}_{1} \sqsubseteq \dot{\tau}_{2}$. Given $X \subseteq \operatorname{Der}(\dot{T})$, let $\operatorname{Names}(X)$ be the set of names that occur in the elements of X.

Crucial Fact (the "Derived Tree Theorem"): $\operatorname{Der}(\dot{T})$ is a regular tree. Also, given any $[(\dot{\tau}, \alpha)] \in \operatorname{Der}(\dot{T})$, the successors of the node named by $\dot{\tau}$ are all named by successors of $[(\dot{\tau}, \alpha)]$ in $\operatorname{Der}(\dot{T})$.

SDHL version of main theorem: part 2

Let \dot{T}_{0}, \dot{T}_{1} be names for regular trees and let \dot{c} be a name such that

$$
1 \Vdash_{\mathbb{P}}\left[\dot{c}: \dot{T}_{1} \otimes \dot{T}_{2} \rightarrow \check{\sigma}\right] .
$$

Let $d: \operatorname{Der}\left(\dot{T}_{0}\right) \otimes \operatorname{Der}\left(\dot{T}_{1}\right) \rightarrow \mathbb{P} \times \sigma$ be any coloring such that for each $r=\left\langle\left[\left(\dot{\tau}_{0}, \alpha\right)\right],\left[\left(\dot{\tau}_{1}, \alpha\right)\right]\right\rangle$,

$$
\operatorname{First}(d(r)) \Vdash_{\mathbb{P}} \dot{c}\left(\dot{\tau}_{0}, \dot{\tau}_{1}\right)=\operatorname{Second}(d(r))
$$

Apply $\operatorname{SDHL}(d,|\mathbb{P}| \cdot \sigma, \kappa)$ to get $I<I^{\prime}<\kappa, X_{0} \subseteq \operatorname{Der}\left(\dot{T}_{0}\right)\left(I^{\prime}\right)$, $X_{1} \subseteq \operatorname{Der}\left(\dot{T}_{1}\right)\left(I^{\prime}\right)$, and nodes $t_{0} \in \operatorname{Der}\left(\dot{T}_{0}\right)(I)$ and $t_{1} \in \operatorname{Der}\left(\dot{T}_{1}\right)(I)$ such that X_{i} dominates the successors of $t_{i}($ for $i=0,1)$ and d is monochromatic on $X_{0} \otimes X_{1}$, say with color (p, δ). By the Derived Tree Theorem, p forces that \dot{c} is monochromatic on $\operatorname{Names}\left(X_{0}\right) \otimes \operatorname{Names}\left(X_{1}\right)$, with color $\check{\delta}$. Also, Names $\left(X_{i}\right)$ dominates the successors of the node named by $t_{i}($ for $i=0,1)$.

$<\kappa$-closed forcings

So now we know that SDHL, HL, and $\mathrm{HL}^{\text {tc }}$ cannot be broken by forcings of size $<\kappa$.

Here is another preservation theorem (but it does not hold for $\mathrm{HL}^{\text {tc }}$):

Theorem 2 (Dobrinen and H. [2])

Suppose κ is measurable and $0<\sigma<\kappa$. Let \mathbb{P} be a $<\kappa$-closed forcing. Then $\operatorname{SDHL}(2, \sigma, \kappa)$ implies $1 \Vdash_{\mathbb{P}} \operatorname{SDHL}(2, \sigma, \kappa)$.

Ingredients in the proof (2 and 3 are in the next two slides):

1) a < κ-closed forcing will preserve stationary subsets of κ.
2) if SDHL holds at a measurable cardinal, it holds on a measure one (and therefore stationary) set below the cardinal.
3) if SDHL holds on a stationary set below a cardinal, it holds at the cardinal.

Downward (and upward) reflection at a measurable

$\operatorname{SDHL}(2, \sigma, \kappa)$ is a statement about $V_{\kappa+1}$.

The following proposition also works for either HL or $\mathrm{HL}^{t c}$ in place of SDHL.

Proposition (Dobrinen and H. [2])

Let κ be a measurable cardinal with a normal measure \mathcal{U}. Fix $0<\sigma<\kappa$. Then $\operatorname{SDHL}(2, \sigma, \kappa)$ iff

$$
\{\alpha<\kappa: \operatorname{SDHL}(2, \sigma, \alpha)\} \in \mathcal{U}
$$

Proof: Let $j: V \rightarrow M$ be the ultrapower embedding.
Because $V_{\kappa+1} \subseteq M, \operatorname{SDHL}(2, \sigma, \kappa) \Leftrightarrow \operatorname{SDHL}(2, \sigma, \kappa)^{M}$.
By Łos's Theorem, $\operatorname{SDHL}(2, \sigma, \kappa)^{M} \Leftrightarrow\{\alpha<\kappa: \operatorname{SDHL}(2, \sigma, \alpha)\} \in \mathcal{U}$.

Upward stationary reflection

The following is not true for $\mathrm{HL}^{\text {tc }}$.

Proposition (Dobrinen and H. [2])

Let κ be a cardinal. Assume either

1) κ is inaccessible or
2) $\operatorname{cf}(\kappa)>\omega$ and κ is the limit of inaccessible cardinals.

Assume that

$$
S:=\{\alpha<\kappa: \operatorname{SDHL}(2, \sigma, \alpha)\}
$$

is stationary. Then $\operatorname{SDHL}(2, \sigma, \kappa)$ holds.
Proof: Let $\left\langle T_{i} \subseteq{ }^{<\kappa} \kappa: i<2\right\rangle$ be a sequence of regular trees and let $c: \bigotimes_{i<2} T_{i} \rightarrow \sigma$ be a coloring. If we can find an $\alpha<\kappa$ such that each $T_{i} \cap{ }^{<\alpha} \kappa$ is a regular α-tree and $\operatorname{SDHL}(2, \sigma, \alpha)$ holds, then we will be done. An elementary argument shows that for each $i<2$, there is a club $C_{i} \subseteq \kappa$ such that $\left(\forall \alpha \in C_{i}\right) T_{i} \cap^{<\alpha} \kappa$ is a regular α-tree. The set $\bigcap_{i<2} C_{i}$ is a club, so it must intersect S. An $\alpha<\kappa$ in the intersection is as desired.

SDHL at a not weakly compact cardinal

Let Ψ be the statement $(\forall \sigma<\kappa) \operatorname{SDHL}(2, \sigma, \kappa)$.

Corollary (Dobrinen and H. [2])

Let κ be measurable and assume Ψ holds. Then after performing any non-trivial forcing of size $<\kappa$ followed by a non-trivial $<\kappa$-closed forcing, Ψ will still hold but κ will not be weakly compact.

Proof: By a theorem of Hamkins [7], any non-trivial forcing of size $<\kappa$ followed by a non-trivial $<\kappa$-closed forcing will make κ NOT weakly compact.

Perform any non-trivial forcing of size $<\kappa$ over V to get $V\left[G_{1}\right]$. This will preserve Ψ by Theorem 1. Now perform any non-trivial $<\kappa$-closed forcing over $V\left[G_{1}\right]$ to get $V\left[G_{1}\right]\left[G_{2}\right]$. Since κ is measurable in $V\left[G_{1}\right]$, by Theorem 2 we have that Ψ holds in $V\left[G_{1}\right]\left[G_{2}\right]$.

Large cardinal strength?

Zhang [10] has independently shown that SDHL can hold at a cardinal that is not weakly compact.

On the other hand, Zhang [10] has shown that $\mathrm{HL}^{t c}(2,<\kappa, \kappa)$ implies that κ is weakly compact.

Question

Can SDHL ever fail?

In pacticular, does SDHL have any large cardinal strength?

Also, we must ask the following:

Question

Can $(*)_{\kappa}$ ever fail?

References

[1] N. Dobrinen and D. Hathaway. The Halpern-Läuchli theorem at a measurable cardinal. The Journal of Symbolic Logic 82 (2017), 17-33.
[2] N. Dobrinen and D. Hathaway. Forcing and the Halpern-Läuchli theorem. To appear.
[3] I. Farah and S. Todorcevic. Some applications of the method of forcing. Moscow: Yenisei, 1995.
[4] S. Friedman and K. Thompson. Perfect trees and elementary embeddings. The Journal of Symbolic Logic 73 (2008).
[5] J. D. Halpern and H. Lauchli. A partition theorem. Transactions of the American Mathematical Society 124 (1966).
[6] A. Hajnal and P. Komjath. A strongly non-Ramsey order type. Combinatorica 17 (1997).
[7] J. D. Hamkins. Small forcing makes any cardinal superdestructible. Journal of Symbolic Logic 63 (1998), 51-58.
[8] S. Shelah. Strong partition relations below the power set: consistency - was Sierpinski right? II. Sets, Graphs and Numbers 60 (1991).
[9] S. Todorcevic. Introduction to Ramsey spaces. Princeton, NJ: Princeton University Press, 2010.
[10] J. Zhang. A tail cone version of the Halpern-Läuchli Theorem at a large cardinal. To appear.

Thank You!

