DISTRIBUTIVE LAWS FOR BOOLEAN ALGEBRAS

DAN HATHAWAY

ABSTRACT. Here I will talk about some classical facts about the distributivity of complete Boolean algebras (including an application of the Covering Lemma). I will also mention some of my theorems in the paper "Weak Distributivity Implying Distributivity".

1. Some Set Theory Definitions

Definition 1.1. *X* is **transitive** iff

$$(\forall y \in X)(\forall z \in y) z \in X.$$

Definition 1.2. A ctm is a countable transitive set M such that

$$\langle M, \in \rangle \models \text{ZFC}.$$

Definition 1.3. M is an **inner model** iff M is a proper class such that

- 1) M is transitive
- 2) M contains all the ordinals
- 3) $\langle M, \in \rangle \models ZF$.

Definition 1.4. A cardinal κ is **singular** iff there is some sequence or ordinals $\langle \kappa_{\alpha} : \alpha < \lambda \rangle$ such that

$$\kappa = \sup\{\kappa_{\alpha} : \alpha < \lambda\}$$

where $\lambda < \kappa$ and each $\kappa_{\alpha} < \kappa$. A cardinal that is not singluar is called **regular**.

 \aleph_0 is the first infinite cardinal. It is regular.

 \aleph_1 is the second infinite caridnal. Also regular.

 \aleph_2 regular. etc.

 \aleph_{ω} is singular.

 $\aleph_{\omega+1}$ is regular.

The first incacessible cardinal is regular (all inaccessible cardinals are regular).

The first weakly compact cardinal is regular (all weakly compact cardinals are inaccessible). I may define this later.

The first measurable cardinal is regular (every measurable cardinal is weakly compact). I may define this later.

Those are all the large cardinals that we will talk about.

2. Complete Boolean Algebras

Definition 2.1. A lattice is a poset with joins and meets (any two x, y have a least upper bound and a greatest lower bound).

Definition 2.2. A **Boolean algebra** is a lattice with a top (1) and bottom (0) element such that

1) every element has a complement:

$$(\forall x)(\exists y)x \land y = 0 \text{ and } x \lor y = 1.$$

2)
$$x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z)$$
.

Definition 2.3. A **complete Booelan algebra** is a Boolean algebra in which every subset has a least upper bound and a greatest lower bound.

(Write this next definition on another board).

Definition 2.4. Let κ and λ be cardinals. For a Boolean algebra, the (κ, λ) -distributive law states

$$\bigwedge_{\alpha < \kappa} \bigvee_{\beta < \lambda} x_{\alpha,\beta} = \bigvee_{f:\kappa \to \lambda} \bigwedge_{\alpha < \kappa} x_{\alpha,f(\alpha)}.$$

Fact: the > direction is always true.

We will write (κ, λ) -DL for the (κ, λ) -distributive law.

So the $(\aleph_0, 2)$ -DL is analogous to

$$\prod_{n=1}^{\infty} (x_{n,1} + x_{n,2}) = \sum_{f: \mathbb{N} \to 2} \prod_{n=1}^{\infty} x_{n,f(n)}$$

for real numbers.

If \mathbb{B} is a Boolean algebra, then it satisfies the (m, n)-DL for any $m, n \in \mathbb{N}$.

Definition 2.5. Fix a cardinal κ . If \mathbb{B} satisfies the (κ, λ) -DL for every λ , we say \mathbb{B} satisfies the (κ, ∞) -DL.

Definition 2.6. Given a Bolean algebra \mathbb{B} , we call $x \in \mathbb{B}$ an **atom** iff 0 < x and there is no $y \in \mathbb{B}$ such that 0 < y < x.

Fact 2.7. Let \mathbb{B} be a Boolean algebra.

1) If every nonzero element of \mathbb{B} is above an atom, then $(\forall \kappa) \mathbb{B} \models (\kappa, \infty)$ -DL.

2) If \mathbb{B} has no atoms, then $(\exists \kappa) \mathbb{B} \not\models (\kappa, \infty)$ -DL.

Fact 2.8. Let $\kappa_2 \geq \kappa_1$. Fix λ . For cBa's,

$$(\kappa_2, \lambda)$$
-DL $\Rightarrow (\kappa_1, \lambda)$ -DL.

Fact 2.9. Let $\lambda_2 \geq \lambda_1$. Fix κ . For cBa's,

$$(\kappa, \lambda_2)$$
-DL $\Rightarrow (\kappa, \lambda_1)$ -DL.

3. The Weak Distributive Law

Even if $\mathbb B$ does not satisfy the (κ, λ) -DL, it might satisfy the following weaker axiom:

Definition 3.1. Let κ and λ be cardinals. For a Boolean algebra, the (κ, λ) -weak distributive law states

$$\bigwedge_{\alpha < \kappa} \bigvee_{\beta < \lambda} x_{\alpha,\beta} = \bigvee_{f: \kappa \to \lambda} \bigwedge_{\alpha < \kappa} \bigvee_{\beta \le f(\alpha)} x_{\alpha,\beta}.$$

We will call this the (κ, λ) -WDL.

Proposition 3.2. Fix κ and λ . Here are implications between distributive laws for cBa's:

- 1) (κ, λ) - $DL \Rightarrow (\kappa, \lambda)$ -WDL.
- 2) $(\kappa, 2)$ - $DL \Rightarrow (\kappa, 2^{\kappa})$ - $DL \Rightarrow (\kappa, \kappa)$ -WDL.
- 3) (κ, κ) - $WDL \Rightarrow (\kappa, 2)$ -DL.
- 4) if moreover $\kappa < \lambda$ and λ is regular, then (κ, λ) -WDL is always true.

Fact 3.3. If $\lambda_1 \neq \lambda_2$, the relaphionship between the (κ, λ_1) -WDL and the (κ, λ_2) -WDL is more complicated.

Example 3.4. Let $\mathbb{B} = P(\mathbb{R})$ mod the Lebegsue measure zero sets. Then \mathbb{B} is a cBa such that $\mathbb{B} \models (\aleph_0, \aleph_0)$ -WDL but $\mathbb{B} \not\models (\aleph_0, 2)$ -DL.

Example 3.5. Let $\mathbb{B} = P(\mathbb{R})$ mod the meager sets of reals. Then \mathbb{B} is a cBa such that $\mathbb{B} \not\models (\aleph_0, \aleph_0)$ -WDL (and so also $\mathbb{B} \not\models (\aleph_0, 2)$ -DL).

4. Some Implications

Fact 4.1. Fix κ . Let \mathbb{B} be a cBa and let $\lambda = |\mathbb{B}|$. Then if $\mathbb{B} \models (\kappa, \lambda)$ -DL, then $\mathbb{B} \models (\kappa, \infty)$ -DL.

Fact 4.2. Fix κ . For cBa's,

$$(\kappa, 2)$$
- $DL \Rightarrow (\kappa, 2^{\kappa})$ - DL .

Corollary 4.3. Let $\kappa \leq \lambda$. Then for cBa's,

$$(\lambda, 2)$$
- $DL \Rightarrow (\kappa, \lambda)$ - DL .

Proof.

$$(\lambda, 2)$$
-DL $\Rightarrow (\lambda, 2^{\lambda})$ -DL $\Rightarrow (\kappa, 2^{\lambda})$ -DL $\Rightarrow (\kappa, \lambda)$ -DL

5. Some Non-Implications

Fact 5.1. For each infinite cardinal κ , there is a cBa \mathbb{B} such that

- $(\forall \alpha < \kappa) \mathbb{B} \models (\alpha, \infty) DL$
- $\mathbb{B} \not\models (\kappa, 2)$ -DL.

Solovay asked the question: does the $(\kappa, 2)$ -DL imply the (κ, ∞) -DL?

Fact 5.2. Assuming CH, there is a \mathbb{B} (called Namba forcing) such that

- $\mathbb{B} \models (\aleph_0, 2) DL$.
- $\mathbb{B} \not\models (\aleph_0, \aleph_2) DL$.

Fact 5.3. Let κ be a cardinal which is a limit of a countable set of cardinals, and assume $(\forall \mu < \kappa) \mu^{\aleph_0} < \kappa$. There is a cBa \mathbb{B} such that:

- $(\forall \alpha < \kappa) \mathbb{B} \models (\aleph_0, \alpha) DL$.
- $\mathbb{B} \not\models (\aleph_0, \kappa)$ -DL.

So the next question is the following:

Question 5.4. Let $\kappa \geq \aleph_1$. Is there a cBa \mathbb{B} such that $\mathbb{B} \models (\kappa, 2)$ -DL but $\mathbb{B} \not\models (\kappa, \infty)$ -DL?

Theorem 5.5. (Main Theorem) Each item in the list below implies the next:

- 1) There is a measurable cardinal.
- 2) $(\exists cBa\mathbb{B})\mathbb{B} \models (\aleph_1, 2)\text{-}DL \ but \mathbb{B} \not\models (\aleph_1, \infty)\text{-}DL.$
- 3) $(\exists \kappa \geq \aleph_1)(\exists cBa\mathbb{B}) \mathbb{B} \models (\kappa, 2)\text{-}DL \ but \mathbb{B} \not\models (\kappa, \infty)\text{-}DL.$
- 4) There is an inner model M such that

$$M \models ZFC + \exists \ a \ measurable \ cardinal.$$

Here is the 1) implies 2) direction:

Theorem 5.6. (Prikry) Let κ be a measurable cardinal. There is a $cBa \mathbb{B}$ such that $(\forall \alpha < \kappa) \mathbb{B} \models (\alpha, 2)\text{-}DL$ but $\mathbb{B} \not\models (\aleph_0, \kappa)\text{-}DL$, and so $\mathbb{B} \not\models (\kappa, 2)\text{-}DL$. Hence also, $\mathbb{B} \models (\aleph_1, 2)\text{-}DL$ but $\mathbb{B} \not\models (\aleph_1, \kappa)\text{-}DL$.

The 2) implies 3) direction is trivial.

We will talk about something close to the 3) implies 4) direction soon.

6. Forcing

How do we prove things about distributive laws?

I might want to say: $\mathbb{B} \models (\kappa, \lambda)$ -DL iff whenever you "force" using \mathbb{B} , every function from κ to λ in the extension is already in the ground model. $\mathbb{B} \models (\kappa, \lambda)$ -WDL iff whenever you "force" using \mathbb{B} , every function from κ to λ in the extension is dominated by such a function in the ground model.

Definition 6.1. Given a cBa \mathbb{B} , we say $D \subseteq \mathbb{B}$ is **dense** iff

$$(\forall x \in \mathbb{B} - \{0\})(\exists y \in D) \, y \le x.$$

Definition 6.2. Let M be a ctm. Let $\mathbb{B} \in M$ be such that $M \models (\mathbb{B} \text{ is a cBa})$. Then $G \subseteq \mathbb{B}$ is \mathbb{B} -generic over M iff for every $D \subseteq \mathbb{B}$ in M, if $M \models (D \subseteq \mathbb{B} \text{ is dense})$, then $G \cap D \neq \emptyset$.

Note: if $\mathbb{B} \in M$ has no atoms, then if G is \mathbb{B} -generic over M, then $G \notin M$.

Fact 6.3. Let M be a ctm. Let $\mathbb{B} \in M$ be such that $M \models (\mathbb{B} \text{ is a ctm})$. Let G be \mathbb{B} -generic over M. Then there is a smallest model M[G] of ZF such that $M \subseteq M[G]$ and $G \in M[G]$. We also have $M[G] \models ZFC$.

Theorem 6.4. Let M be a ctm. Let $\mathbb{B} \in M$ be such that $M \models (\mathbb{B} \text{ is a } ctm)$. Fix $\kappa, \lambda \in M$. TFAE:

- $M \models (\mathbb{B} \models (\kappa, \lambda) DL)$.
- For every G that is \mathbb{B} -generic over M, we have every $f: \kappa \to \lambda$ in M[G] is already in M.

Theorem 6.5. Let M be a ctm. Let $\mathbb{B} \in M$ be such that $M \models (\mathbb{B} \text{ is a } ctm)$. Fix $\kappa, \lambda \in M$. TFAE:

- $M \models (\mathbb{B} \models (\kappa, \lambda) \text{-} WDL).$
- For every G that is \mathbb{B} -generic over M, for every $f: \kappa \to \lambda$ in M[G], there is some $g: \kappa \to \lambda$ in M such that

$$(\forall \alpha < \kappa) f(\alpha) \le g(\alpha).$$

7. The Core Model

(Only do this if have time).

Theorem 7.1. (Dodd-Jensen) Assume there is no inner model with a measurable cardinal. Then in any forcing extension of V, there is no inner model with a measurable cardinal. Moreover, there is an inner model K such that

1) K is computed the same way in every forcing extension

2) In any forcing extension of V the following holds: for every cardinal λ , we have λ is regular iff $K \models \lambda$ is regular.

Corollary 7.2. Suppose there is a cBa \mathbb{B} and an inacessible cardinal κ (so κ is a regular limit cardinal) such that

- 1) $(\forall \alpha < \kappa) \mathbb{B} \models (\alpha, 2) DL$.
- 2) $\mathbb{B} \not\models (\aleph_0, \kappa) DL$.

Then there is an inner model with a measurable cardinal.

Proof. Assume there is no inner model with a measurable cardinal.

Let G be \mathbb{B} -generic over V. By 1), the cardinals below κ in V are the same as the cardinals below κ in V[G]. So κ is a limit of cardinals in V[G], so κ is cardinal in V[G].

But by 1) and 2) together, there must be a function $f:\aleph_0 \to \kappa$ in V[G] whose range is cofinal in κ . Hence κ is singular in V[G]. So κ is singular in $K^{V[G]} = K$.

On the other hand, because κ is regular in V, κ is regular in K. This is impossible. \square

8. Weak Distributivity

Here is one of my theorems:

Theorem 8.1. (H.) Let λ be a cardinal and let \mathbb{B} be a cBa. Let $\mu = \lambda^{\aleph_0}$. Then if $\mathbb{B} \models (\mu, \aleph_0)$ -WDL, then $\mathbb{B} \models (\lambda, 2)$ -DL.

Corollary 8.2. Let \mathbb{B} be a forcing such that every function from 2^{\aleph_0} to \aleph_0 in the extension is dominated by such a function in the ground model. Then every real number in the extension is in the ground model.

The following is easy:

Fact 8.3. There is a cBa \mathbb{B} such that $(\forall \mu) \mathbb{B} \models (\mu, \aleph_1)$ -WDL but $\mathbb{B} \not\models (\aleph_0, 2)$ -DL.

So there is a qualitative difference between \aleph_0 and \aleph_1 .

The property of \aleph_0 we used was similar to weak compactness.

Theorem 8.4. (H.) Let κ be a weakly compact cardinal. Let \mathbb{B} be a cBa such that

- 1) $(\forall \alpha < \kappa) \mathbb{B} \models (\alpha, 2) DL$.
- 2) $\mathbb{B} \models (2^{\kappa}, \kappa) WDL$.

Then $\mathbb{B} \models (\kappa, 2)$ -DL.

Department of Mathematics, University of Denver, 2280 S Vine St, Denver, CO 80208, USA

E-mail address: Daniel.Hathaway@du.edu