Why do Quines exist:
The Recursion Theorem

What is a Quine?

A Quine is a program that outputs its own
source code

 Not immediately obvious that they exist,
especially in every computer language, but
they do!

* Quine in Haskell (wikipedia):
main=putStr(p++show(p))where p=
"main=putStr(p++show(p))where p="

The Recursion Theorem

* We want to prove that Quines (and things like

Quines) exist and have a way to construct
them

* Before we talk about proving such a result, we
need a model of computations (Turing
Machines, Lambda Calculus, etc).

Model Of Computation

Let »\™ denote the program that takes m string arguments

with source code being the string n, and let @%m) (1. ..., Ty) denote

the “output”™ of the program when passed the strings xj. ..., T,,.

*Note: In this model of computation, a program must halt in

order for the output to count. If a program g,g m) does not halt on

input xy, &,, wWe write g,()(ey Tm) T

Vi oz 9,5;'1’”(L1y s Tpp) = gygl)(ml, ..., T,) means that for each

d

input x1i...., T, either both @511 ™) and gag;l) do not halt or they both
halt and output the same string.

Important Lemma

(s-m-n Theorem):

For all e,m.n there exists an s such that for all yq,...,y,, we

have gagm)(yl, s Ym) | and for all @y, ..., z,

gm—i—n) (

(We will take this theorem as given for any real programming language)

Recursion Theorem (Statement)

Theorem (Recursion):

If fis anv program that takes one input string and always halts,
then there is some string g such that

Example: If f is anv program that takes input y and returns the
source code for a program that prints y. then the g will be the
source code of a Quine.

Note: This theorem is amazing. Essentially, any program that does a task can be
modified into a program that does the same task but that knows about its new self
(source code). However, we cannot construct programs that know in general what
they will do, because then we could make a program that does the opposite of what
it knows it will do (which is impossible).

Recursion Theorem Proof (Clever)

First. we can write a program h such that

m)
Tm JLL(E_. L1y enes :I’.'J‘TL) = o\ (5'31_. :I’.'J".FL)'

~ TP (e)

Writing h may be as difficult as writing an interpreter for our
computer language in the language. Next. applying the s-m-n the-
orem to reduce the number of inputs to A we have that there is
some s such that

_(m)

ve,rl,...,rm:ﬁ’l (1) (Ilr ‘TTIL) — h—(E_. L1sens ‘TTH.)'
¥ s {E:'

Combining the two equations and setting e = s:

m) (m)
Ve T "'H(m'” (11: £) =¥, ¢ (‘T L)
Loaeens m (1 Lo b 1 Lo vvensim)o
Lo ®m Y 50 (s) Fes(s))
1

S ‘1
Calling g = s ' (s). we have proved the theorem.

Easy to Understand Corollary:

If g is any program that takes the inputs e. x4, ..., x,, then there
is some ¢ such that

@E}wl) (El J-:TTI) — g(q L1y eeny 3-:’."?'1)
(m)

Proof: Just apply s-m-n theorem to g to write in the form ¢,
Ps

)

can let f = g-:)gl and apply the recursion theorem.

All computer scientists should know this version of the theorem!

Advanced

Suppose f is any function from the set of all strings into it-
self and suppose that this function can be computed by a Turing
machine that uses the halting set as an oracle but the halting set
cannot be computed by a Turing machine that uses f as an oracle.
In this case. we still have

quzl....,l‘m :f?ér”:l(j:lr bl I'H"L) — ﬁ{fr{;jj (-Tl,' Ier).

That is. we can apply the recursion theorm to any function f
that is NOT Turing-complete, even if f is not computable.

Note: By “not Turing-complete”, | mean not every recursively enumerable set is
Turing reducible to f.

Bibliography

* “Recursively Enumerable Sets and Degrees” by
Robert |. Soare

 “Computable Structures and the
Hyperarithmetical Hierarchy” by C.J. Ash, J.F.
Knight

* Wikipedia!

