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1 The Cup Product

1.1 Defining The Cup Product and Showing it is Well Defined

Consider cohomology with coefficients in some fixed ring R. This is different from what we have been
studying so far in class, because up till now our coefficients were in an arbitrary abelian group. We can
take the direct sum

⊕
n≥0H

n(X) of all cohomology groups of a topological space X to obtain an abelian
group. What we would like to do is add a multiplication operation on this group to get a ring. This
multiplication will be the cup product.

Given ψ ∈ Zn(X), let [ψ] represent the cohomology class of ψ. Recall that Cn(X) = Hom(Cn(X), R),
φ ∈ Zn(X) means δ(φ) = 0, and φ ∈ Bn(X) means φ = δ(φ′) for some (n − 1)-cochain φ′ ∈ Cn−1(X).
To define the cup product ^ on

⊕
n≥0H

n(X), it suffices to define [φ] ^ [ψ] for [φ] ∈ Hn(X) and
[ψ] ∈ Hm(X) where n,m ≥ 0 are arbitrary (because then ^ can be defined component wise). To do
this, we will use the symbol ^ to denote a product φ ^ ψ of n and m cohains, and we will show that
this operation is well defined on cohomology classes. Given φ ∈ Cn(X) and ψ ∈ Cm(X), define φ ^ ψ
to be the (n+m)-cochain that satisfies the following formula for all σ : ∆n+m → X:

(φ ^ ψ)(σ) = φ(σ|[v0, ..., vn])ψ(σ|[vn, ..., nn+m]).

This formula makes sense because φ(σ|[v0, ..., vn]) and ψ(σ|[vn, ..., vn+m]) are both elements of R, so they
can be multiplied.

What we want is an induced ^ operation

Hn(X)×Hm(X)→ Hn+m(X).

To get this, we must show that the ^ operation

Cn(X)× Cm(X)→ Cn+m(X)

maps Zn(X) × Zm(X) to Zn+m, and if [φ] = [φ′] and [ψ] = [ψ′], then [φ ^ ψ] = [φ′ ^ ψ′]. Both of
these facts are implied by the following Lemma:

Lemma: If φ ∈ Cn(X) and ψ ∈ Cm(X), then δ(φ ^ ψ) = δφ ^ ψ + (−1)nφ ^ δψ.
Proof: We will compute δ(φ ^ ψ)(σ), (δφ ^ ψ)(σ), and (φ ^ δψ)(σ) separately for an arbitrary
σ : ∆n+m+1 → X. Computing δ(φ ^ ψ):

δ(φ ^ ψ)(σ) = (φ ^ ψ)(∂σ) = (φ ^ ψ)(

n+m+1∑
i=0

(−1)iσ|[v0, ..., v̂i, ..., vn+m+1]) =

n+m+1∑
i=0

(−1)i(φ ^ ψ)(σ|[v0, ..., v̂i, ..., vn+m+1]).

The last equality follows because φ ^ ψ is a homomorphism. Computing (δφ ^ ψ)(σ):

(δφ ^ ψ)(σ) = (δφ)(σ|[v0, ..., vn+1])ψ(σ|[vn+1, ..., vn+m+1]) = φ(∂(σ|[v0, ..., vn+1]))ψ(...) =
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φ(

n+1∑
i=0

(−1)iσ|[v0, ..., v̂i, ..., vn+1])ψ(...) =

n+1∑
i=0

(−1)iφ(σ|[v0, ..., v̂i, ..., vn+1])ψ(...).

Computing (φ ^ δψ)(σ) in the same way:

(φ ^ δψ)(σ) = φ(σ|[v0, ..., vn])(δψ)(σ|[vn, ..., vn+m+1]) = φ(...)ψ(∂(σ|[vn, ..., vn+m+1])) =

φ(...)ψ(

n+m+1∑
i=n

(−1)i−nσ|[vn, ..., v̂i, ..., vn+m+1]) =

n+m+1∑
i=n

(−1)i−nφ(...)ψ(σ|[vn, ..., v̂i, ..., vn+m+1]).

Thus,

(δφ ^ ψ)(σ) + (−1)n(φ ^ δψ)(σ) =

n+1∑
i=0

(−1)iφ(σ|[v0, ..., v̂i, ..., vn+1])ψ(σ|[vn+1, ..., vn+m+1])+

(−1)n
n+m+1∑
i=n

(−1)i−nφ(σ|[v0, ..., vn])ψ(σ|[vn, ..., v̂i, ..., vn+m+1]).

Notice how the last term of the first sum cancels with the first term of the second sum. Comparing the
resulting sum to what we calculated δ(φ ^ ψ) to be, we find that (δφ ^ ψ)(σ) + (−1)n(φ ^ δψ)(σ) =
δ(φ ^ ψ). This completes the proof of the lemma.

With this lemma in place, it is clear that if φ ∈ Zn(X) and ψ ∈ Zm(X), then φ ^ ψ ∈ Zn+m(X): if
δφ = 0 and δψ = 0, then δ(φ ^ ψ) = δφ ^ ψ + (−1)nφ ^ δψ = 0 ^ ψ + (−1)nφ ^ 0 = 0 + 0 = 0.
Thus, ^ restricts to a map from Zn(X)× Zm(X) to Zn+m(X).

Suppose now that φ, φ′ ∈ Zn(X), ψ,ψ′ ∈ Zm(X), φ− φ′ ∈ Bn(X), and ψ − ψ′ ∈ Bm(X). We want
to show that [φ ^ ψ] = [φ′ ^ ψ′]. Let φ − φ′ = δφ̃ for some φ̃ ∈ Cn+1(X). The lemma gives us
δ(φ̃ ^ ψ) = δφ̃ ^ ψ+ (−1)nφ ^ δψ. Since ψ ∈ Zn(X), this means that δψ = 0 so δ(φ̃ ^ ψ) = δφ̃ ^ ψ.
Thus, δφ̃ ^ ψ is a coboundary. That is, δφ̃ ^ ψ = (φ−φ′) ^ ψ = (φ ^ ψ)− (φ′ ^ ψ) is a coboundary.
That is, [φ ^ ψ] = [φ′ ^ ψ]. In the same way, we can show [φ′ ^ ψ] = [φ′ ^ ψ′]. This establishes
[φ ^ ψ] = [φ′ ^ ψ′]. That is, ^ is a well defined map from Hn(X)×Hm(X) to Hn+m(X).

1.2 Cohomology Ring

With the cup product defined, it is worth checking that this operation on
⊕

n≥0H
n(X) indeed gives

us a ring structure. We have that ^ is associative because given [φ] ∈ Hn(X), [ψ] ∈ Hm(X), and
[γ] ∈ Hk(X), we have

((φ ^ ψ) ^ γ)(σ) = φ(σ|[v0, ..., vn])ψ(σ|[vn, ..., vn+m])γ(σ|[vn+m, ..., vn+m+k]) = (φ ^ (ψ ^ γ))(σ)

so ([φ] ^ [ψ]) ^ [γ] = [φ] ^ ([ψ] ^ [γ]). We also have that ^ distributes with addition, because if
φ, φ′ ∈ Zn(X) and ψ ∈ Zm(X), then

((φ+φ′) ^ ψ)(σ) = (φ+φ′)(σ|[v0, ..., vn])ψ(σ|[vn, ..., vn+m]) = φ(...)ψ(...)+φ′(...)ψ(...) = (φ ^ ψ+φ′ ^ ψ)(σ).

The same is true for the second argument. Thus, we do indeed have a ring structure on cohomology. In
fact, we have more than just a ring structure:

⊕
n≥0H

n(X) forms an R-algebra (which can be easily
verified).

1.3 Taking the Cohomology Ring is Functorial

We have shown that every topological space has associated with it a cohomology ring. The question arises
as to if there is a ring homomorphism induced by a continuous function between topological spaces. This
turns out to be the case.
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That is, let X and Y be topological spaces and let f : X → Y be a continuous function. For each n,
we have an induced group homomorphism f∗n : Hn(Y )→ Hn(X). This induces a group homomorphism
f∗ :

⊕
n≥0H

n(Y ) →
⊕

n≥0H
n(X). We claim that this map f∗ is also a ring homomorphism. This is

because if φ is an i-cochain on Y and ψ is a j-cochain on Y , then

(f∗(φ) ^ f∗(ψ))(σ) = (f∗(φ))(σ|[v0, ..., vi])(f∗(ψ))(σ|[vi, ..., vi+j ]) =

φ((f ◦ σ)|[v0, ..., vi])ψ((f ◦ σ)|[vi, ..., vi+j ]) = (φ ^ ψ)(f ◦ σ) = f∗(φ ^ ψ)(σ).

Thus, on cohomology classes we have [f∗(φ)] ^ [f∗(ψ)] = [f∗(φ ^ ψ)]. Thus, for elements a, b ∈⊕
n≥0H

n(Y ) we have f∗(a) ^ f∗(b) = f∗(a ^ b). That is, f∗ is a ring homomorphism.
We have that if X, Y , and Z are topological spaces with the continuous maps f : X → Y and

g : Y → Z, then f∗n ◦g∗n = (f ◦g)∗n, for all n. This means that f∗ ◦g∗ = (f ◦g)∗. The fact that these maps
commute is not affected by the additional ring structure that is put on

⊕
n≥0H

n(X),
⊕

n≥0H
n(Y ), and⊕

n≥0H
n(Z). Thus, the operation F of taking the cohomology ring is a (contravariant) functor from

the category of topological spaces to the category of rings.

1.4 Cup Product Is Supercommutative

Consider the cohomology ring
⊕

n≥0H
n(X). Let a ∈ Hi and b ∈ Hj . As long as R is commutative

(a fact which we are assuming), it turns out that a ^ b = (−1)ijb ^ a. We mention this fact here
because we will need this for having a well defined multiplication operation on the tensor product of two
cohomology rings. We omit the proof of supercommutivity for brevity.

2 Computing the Cohomology Ring of Simplicial Complexes

The definition we gave for ^ can be modified to apply to simplicial complexes. Using this definition, we
will compute the cohomology ring of various simplicial complexes.

2.1 Using Z as a Coefficient Ring

From now on in this section, we will use Z instead of an arbitrary ring R. Recall an important tool from
a past homework assignment for calculating the cohomology of a simplicial complex given that we are
using Z for our coefficient group: if all the homology groups Hn(X) are free abelian, then the canonical
homomorphism from the abelian group Hn(X) to the abelian group Hom(Hn(X),Z) is an isomorphism.
We will use this result to compute the cohomology of a space as a first step before we investigate the
ring structure induced by the cup product.

2.2 Cohomology Ring of a Point

First things first, we will compute the cohomology ring of X where X is a space with a single point.
Once this is done, we will know the cohomology ring of any contractible space. In class we showed
H0(X) = Z and Hi(X) = 0 for i 6= 0. Since every homology group of X is free abelian, we have
Hi(X) ∼= Hom(Hi(X),Z) for all i. Since H0(X) = Z, we have H0(X) ∼= Hom(Z,Z). Since Hi(X) = 0
for i ≥ 0, we have Hi(X) ∼= Hom(0,Z) = 0. Since the cup product maps Hn(X)×Hm(X) to Hn+m(X)
and Hn+m(X) = 0 for n+m ≥ 1, the only interesting case is when n+m = 0. That is, when n = m = 0.
To see what ^ does to elements of H0(X)×H0(X), let φ and ψ be two arbitrary 0-cocycles representing
elements of H0(X). That is, φ, ψ ∈ Hom(C0(X),Z) and δφ = δψ = 0. Thus, φ and ψ are both constant
functions. Their cup product φ ^ ψ is just the constant function whose value is the product of their
values. This completes the description of the cohomology ring structure of X.

2.3 Cohomology Ring of A Disjoint Union of Spaces

Suppose the simplicial complex X is the disjoint union of two simplicial complexes X1 and X2. Suppose
that we have computed the cohomology ring of X1 and X2. We claim that we know the cohomology
ring of X. To see why, suppose φ ∈ Cn(X1) and ψ ∈ Cm(X2). φ can be viewed as an element of
Cn(X) that maps every n-simplex of X2 to 0. Similarly, ψ can be viewed as an element of Cm(X) that
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maps every m-simplex of X1 to 0. We have that for every (n + m)-simplex σ in X, (φ ^ ψ)(σ) =
φ(σ|[v0, ..., vn])ψ(σ|[vn, ..., vn+m]). Since every (n + m)-simplex σ is either in X1 or X2, we have that
either ψ(σ|[vn, ..., vn+m]) = 0 or φ(σ|[v0, ..., vn]) = 0. Thus, (φ ^ ψ)(σ) = 0 for all σ. Thus, φ ^ ψ = 0.
Because of this, the cohomology ring of X is the direct sum of the cohomology ring of X1 and the
cohomology ring of X2.

2.4 Cohomology Ring of Sn

Consider a triangulation X of Sn. That is, X is a simplicial complex and |X| is homeomorphic to Sn.
In class, we showed that H0(X) = Z, Hn(X) = Z, and Hi(X) = 0 for i 6= 0, n. Since the homology
groups of X are all free abelian, we have H0(X) ∼= Hom(H0(X),Z) ∼= Z, Hn(X) ∼= Hom(Hn(X),Z) ∼= Z,
and Hi(X) ∼= Hom(Hi(X),Z) = 0 for i 6= 0, n. Thus, the cup product is only interesting in the
H0(X) × H0(X) → H0(X), H0(X) × Hn(X) → Hn(X), and Hn(X) × H0(X) → Hn(X) cases. The
first case is identical to the example of the space with only one point. It can be seen that all path
connected spaces have the same cup product structure on H0(X) × H0(X). To understand the cup
product on H0(X) × Hn(X) → Hn(X), suppose φ ∈ Hom(C0(X),Z) and ψ ∈ Hom(Cn(X),Z) are
arbitrary cocycles (δφ = 0, δψ = 0) representing elements of H0(X) and Hn(X) respectively. We have
that φ is a constant function. Thus, φ ^ ψ is just ψ multiplied by the value that is the constant output
value of φ. The same can be said about Hn(X)→ H0(X)→ Hn. This completes the description of the
Cohomology ring structure of Sn.

2.5 Cohomology Ring of S1 × S1

We will now consider a less trivial example. Let T be the triangulation of S1 × S1 given in the hand
drawn picture. Consider the 0-cochain g, the two 1-cochains f1 and f2, and the 2-cochain h. We claim
that δg = 0, δf1 = 0, and δf2 = 0 (we automatically have δh = 0 because there are no 3-simplices).
To see that δg = 0, note that (δg)([vi, vj ]) = g([vj ]) − g([vi]) = 1 − 1 = 0 for any 1-simplex [vi, vj ] of T
(where i < j).

To show that δf1 = 0, we will show (δf1)(σ) = 0 for every 2-simplex σ of T . The only 2-simplices
we need to check are those that have at least one face in the following set of 1-simplices:

{[v2, v3], [v2, v6], [v5, v6], [v5, v9], [v8, v9], [v3, v8]}.

These 1-simplices are the edges with a squiggly line through them in the drawn triangulation. Performing
the verification that δf1 = 0:

(δf1)([v2, v3, v6]) = f1([v2, v3]) + f1([v3, v6])− f1([v2, v6]) = 1 + 0− 1 = 0

(δf1)([v2, v5, v6]) = f1([v2, v5]) + f1([v5, v6])− f1([v2, v6]) = 0 + 1− 1 = 0

(δf1)([v5, v6, v9]) = f1([v5, v6]) + f1([v6, v9])− f1([v5, v9]) = 1 + 0− 1 = 0

(δf1)([v5, v8, v9]) = f1([v5, v8]) + f1([v8, v9])− f1([v5, v9]) = 0 + 1− 1 = 0

(δf1)([v3, v8, v9]) = f1([v3, v8]) + f1([v8, v9])− f1([v3, v9]) = (−1) + 1− 0 = 0

(δf1)([v2, v3, v8]) = f1([v2, v3]) + f1([v3, v8])− f1([v2, v8]) = 1 + (−1)− 0 = 0.

To show that δf2 = 0, we need only show that (δf2)(σ) = 0 for all 2-simplices σ that have at least
one face in the following set of simplices (the edges with dashed lines in the drawing):

{[v4, v7], [v4, v8], [v5, v8], [v5, v9], [v6, v9], [v6, v7]}.

Performing this verification:

(δf2)([v4, v7, v8]) = f1([v4, v7]) + f1([v7, v8])− f1([v4, v8]) = 1 + 0− 1 = 0

(δf2)([v4, v5, v8]) = f2([v4, v5]) + f2([v5, v8])− f2([v4, v8]) = 0 + 1− 1 = 0

(δf2)([v5, v8, v9]) = f2([v5, v8]) + f2([v8, v9])− f2([v5, v9]) = 1 + 0− 1 = 0

(δf2)([v5, v6, v9]) = f2([v5, v6]) + f2([v6, v9])− f2([v5, v9]) = 0 + 1− 1 = 0

(δf2)([v6, v7, v9]) = f2([v6, v7]) + f2([v7, v9])− f2([v6, v9]) = 1 + 0− 1 = 0

(δf2)([v4, v6, v7]) = f2([v4, v6]) + f2([v6, v7])− f2([v4, v7]) = 0 + 1− 1 = 0.
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We have now shown that g, f1, f2, and h are all cocycles. We will show that their cohomology classes
generate the cohomology groups of T . First, we will give a direct argument that [h] generates H2(T ) (as
an example of how to make such a claim). Let h′ be an arbitrary 2-cochain:

h′ =
∑
i

niχσi

where each ni ∈ Z and χσi
is the function where χσi

(σi) = 1 but χσi
(σ) = 0 for any other σ 6= σi.

We claim that h′ is cohomologous to some cocycle of the form (
∑
i ñi)h where each ñi is either ni or

−ni. To verify this, we need only show that given two adjacent 2-simplices σi and σj , we have χσi
is
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cohomologous to either χσj or−χσj . Once we have this, the result follows immediately by indunction. Let
σ1 = [v5, v8, v9] and σ2 = [v5, v6, v9]. We will show that χσ1 is cohomologous to −χσ2 , and this argument
generalizes to any two adjacent 2-simplices of T . Consider the 1-cochain k defined by k([v5, v9]) = 1 but
k(τ) = 0 for any other 1-simplex τ 6= [v5, v9]. We have that δk is a 2-cochain such that

(δk)(σ1) = (δk)([v5, v8, v9]) = k([v5, v8]) + k([v8, v9])− k([v5, v9]) = 0 + 0− 1 = −1

(δk)(σ2) = (δk)([v5, v6, v9]) = k([v5, v6]) + k([v6, v9])− k([v5, v9]) = 0 + 0− 1 = −1

and (δk)(σ) = 0 for any other 2-simplex σ 6= σ1, σ2. Thus, we have shown that δk = −χσ2 − χσ1 . That
is, δk = (−χσ2

)− (χσ1
), so −χσ2

is cohomologous to χσ1
. Since this argument generalizes to any other

two adjacent 2-simplices σi and σj , it follows that h′ is cohomologous to some integer multiple of h.
Thus, [h] generates H2(T ).

It is immediate that [g] generates H0(T ) because every element g′ of Z0(T ) is a constant function on
the 0-simplices, so g′ is a Z-multiple of g.

We will now show that [f1] and [f2] generate H1(T ). In a homework assignment, we showed H0(X) =
Z, H1(X) = Z2, and H2(X) = Z. Since these homology groups are all free abelian, we have that the
canonical homomorphisms ψi : Hi(T ) → Hom(Hi(T ),Z) are isomorphisms for i = 0, 1, 2. In particular,
the map ψ1 : H1(T ) → Hom(H1(T ),Z) is an isomorphism. If we can show that ψ1([f1]) and ψ1([f2])
generate Hom(H1(T ),Z), we will have that [f1] and [f2] generate H1(T ). Consider the homomorphism
ψ1([f1]) ∈ Hom(H1(T ),Z). In a previous homework assignment, we showed that

a = [v1, v2] + [v2, v3]− [v1, v3]

and
b = [v1, v4] + [v4, v7]− [v1, v7]

are such that [a] and [b] generate H1(T ). To determine the value of the function ψ1([f1]) on [a], we
simply plug a into the function f1 : C1(T ) → Z. We can do this for both ψ1([f1]) and ψ1([f2]) with
both [a] and [b] as arguments:

ψ1([f1])([a]) = f1(a) = f1([v1, v2]) + f1([v2, v3])− f1([v1, v3]) = 0 + 1− 0 = 1

ψ1([f1])([b]) = f1(b) = f1([v1, v4]) + f1([v4, v7])− f1([v1, v7]) = 0 + 0− 0 = 0

ψ1([f2])([a]) = f2(a) = f2([v1, v2]) + f2([v2, v3])− f2([v1, v3]) = 0 + 0− 0 = 0

ψ1([f2])([b]) = f2(b) = f2([v1, v4]) + f2([v4, v7])− f2([v1, v7]) = 0 + 1− 0 = 1.

From these calculations (and the fact that [a] and [b] generate H1(T )), it is clear that ψ1([f1]) and
ψ1([f2]) generate Hom(H1(T ),Z) ∼= Hom(Z2,Z) ∼= Z2. Since ψ1 is an isomorphism, we have that [f1]
and [f2] generate H1(T ).

We have now finished showing that [g] generates H0(T ), [f1] and [f2] generate H1(T ), and [h]
generates H2(T ). We will now compute the cup product structure of T using these generators. First, we
have the obvious facts whose proof we have discussed before:

[g] ^ [g] = [g]

[g] ^ [f1] = [f1] ^ [g] = [f1]

[g] ^ [f2] = [f2] ^ [g] = [f2]

[g] ^ [h] = [h] ^ [g] = [h]

[h] ^ [f1] = [f1] ^ [h] = 0

[h] ^ [f2] = [f2] ^ [h] = 0

[h] ^ [h] = 0.

What is more interesting are products [f1] ^ [f2] and [f2] ^ [f1]. For the 2-simplex [v5, v6, v9], we
have

(f1 ^ f2)([v5, v6, v9]) = f1([v5, v6])f2([v6, v9]) = (1)(1) = 1.

For any other 2-simplex, σ, it can be seen that (f1 ^ f2)(σ) = 0. Thus, we have f1 ^ f2 = χ[v5,v6,v9] =
h. That is, [f1] ^ [f2] = [h]. On the other hand, to compute f2 ^ f1, notice that

(f2 ^ f1)([v5, v8, v9]) = f2([v5, v8])f1([v8, v9]) = (1)(1) = 1.
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On the other hand, (f2 ^ f1)([σ]) = 0 for any other 2-simplex σ. Thus, we have f2 ^ f1 = χ[v5,v8,v9].
We showed previously that χ[v5,v8,v9] is cohomologous to −χ[v5,v6,v9] = −h. Thus, [f2] ^ [f1] = −[h].
That is, we have shown the following:

[f1] ^ [f2] = [h]

[f2] ^ [f1] = −[h].

This agrees with our previous claim that the cup product is supercommutative. This completes our
calculation of the cohomology ring structure of the triangulation T of S1 × S1. Later, we will show that
what we have found here agrees with a formula for computing the cohomology ring of the product of two
spaces.

3 Cross Product (External Cup Product)

3.1 Defining the Cross Product

Let X and Y be topological spaces. We have the (continuous) projection maps p1 : X × Y → X
and p2 : X × Y → Y defined by p1(x, y) = x and p2(x, y) = y. These induce ring homomorphisms:
p∗1 :

⊕
n≥0H

n(X) →
⊕

n≥0H
n(X × Y ) and p∗2 :

⊕
n≥0H

n(Y ) →
⊕

n≥0H
n(X × Y ) (remember that

taking the cohomology ring is a contravariant functor). We wish to combine these homomorphisms
together somehow.

Given an i-cocycle φ on X and a j-cocycle ψ on Y , we can certainly define the map

Hi(X)×Hj(Y )
× // Hi+j(X × Y )

by φ× ψ = p∗1(φ) ^ p∗2(ψ) (because p∗1(φ) is an i-cocycle on X × Y and p∗2(ψ) is a j-cocycle on X × Y ).
Since p∗1 and p∗2 are both R-module homomorphisms, this map is R-bilinear. From this map we can
define the cross product, otherwise known as the external cup product, termwise:

(
⊕

n≥0H
n(X))× (

⊕
n≥0H

n(Y )) //⊕
n≥0H

n(X × Y ).

This map is R-bilinear.

3.2 Defining a Ring Homomorphism out of the Tensor Product

For ease of notation, let X̃ =
⊕

n≥0H
n(X) and Ỹ =

⊕
n≥0H

n(Y ). If we wanted, we could define a

componentwise multiplicative structure on X̃× Ỹ , but this would not be useful because the cross product
would not be a ring homomorphism out of this space. Before jumping the gun and talking about ring
homomorphisms, we should note that other than in trivial cases, the cross product map will not even
be an R-module homomorphism. To remedy the situation, we use the fact that an R-bilinear map out
of the product of R-modules induces an R-module homomorphism out of the tensor product of those
spaces:

X̃ × Ỹ

��

//⊕
n≥0H

n(X × Y )

X̃ ⊗ Ỹ
f

77

Miraculously, we can define a multiplication operation on the tensor product by the following defini-
tion for simple tensors:

(a⊗ b)(c⊗ d) = (−1)|b||c|ac⊗ bd.
We will show that this multiplication is well defined and that this causes f to be a ring homomorphism.

To show that this multiplication operation m′′ is well defined, what we want is a well defined map
m′′ that causes the following diagram to commute (q′ and q′′ are the canonical maps):

(X̃ × Ỹ )× (X̃ × Ỹ )
q′ //

m

��

(X̃ ⊗ Ỹ )× (X̃ × Ỹ )
q′′ //

m′

uu

(X̃ ⊗ Ỹ )× (X̃ ⊗ Ỹ )

m′′

rr
X̃ ⊗ Ỹ .
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The map m is defined by m((a, b), (c, d)) = (−1)|b||c|ac ⊗ bd for a ∈ H |a|(X), b ∈ H |b|(Y ), c ∈ H |c|(X),
and d ∈ H |d|(Y ). This map is extended linearly to be defined on all of (X̃× Ỹ )× (X̃× Ỹ ). To show that
m factors through the map q′ (to show that we have a well defined map m′ that causes the left part of the
diagram to commute), we must show that the map m is R-bilinear for fixed third and fourth arguments.
That is, let c ∈ H |c|(X), and d ∈ H |d|(Y ) be fixed. Consider arbitrary a1 ∈ H |a1|(X), a2 ∈ H |a2|(X),
and b ∈ H |b|(Y ). If |a1| = |a2|, then for any r1, r2 ∈ R we have

r1m((a1, b), (c, d)) + r2m((a2, b), (c, d)) = r1(−1)|b||c|(a1c⊗ bd) + r2(−1)|b||c|(a2c⊗ bd)

= (−1)|b||c|(r1a1c⊗ bd+ r2a2c⊗ bd = (−1)|b||c|(r1a1 + r2a2)c⊗ bd = m((r1a1 + r2a2, b), (c, d)).

If |a1| 6= |a2|, we have that

r1m((a1, b), (c, d)) + r2m((a2, b), (c, d)) = m((r1a1 + r2a2, b), (c, d))

simply from the fact that m is defined on homogeneous elements and is extended linearly to nonhomo-
geneous elements. Similarly, given b1 ∈ H |b1|(X), b2 ∈ H |b2|(X), and a ∈ H |a|(X), we have (for any
r1, r2 ∈ R)

r1m((a, b1), (c, d)) + r2m((a, b2), (c, d)) = m((a, r1b1 + r2b2), (c, d))

if either |b1| = |b2| or |b1| 6= |b2| by the same arguments. This establishes that m is R-bilinear for fixed
third and fourth arguments c and d. Thus, we have a well defined map m′ such that m = m′ ◦ q′. In
the same way, we can show that the map m′ induces a well defined map m′′ such that m = m′′ ◦ q′′ ◦ q′.
This completes the proof that our multiplication operation on X̃ ⊗ Ỹ is well defined.

We will now show that this multiplication operation causes the map f : X̃ ⊗ Ỹ →
⊕

n≥0H
n(X × Y )

to be a ring homomorphism (previously we argued that it is just an R-module homomorphism). To do
this, we need only verify that f((a⊗ b)(c⊗ d)) = f(a⊗ b) ^ f(c⊗ d) for simple tensors a⊗ b and c⊗ d.
The hard part of this verification is that the cup product is supercommutative, which we mentioned
before. Here is the computation:

f((a⊗ b)(c⊗ b)) = f((−1)|b||c|(ac⊗ bd)

= (−1)|b||c|f(ac⊗ bd)

= (−1)|b||c|(p∗1(ac) ^ p∗2(bd))

= (−1)|b||c|(p∗1(a) ^ p∗1(c) ^ p∗2(b) ^ p∗2(d))

= (−1)|b||c|(p∗1(a) ^ ((−1)|p
∗
1(c)||p

∗
2(b)|p∗1(b) ^ p∗2(c)) ^ p∗2(d))

= (−1)|b||c|(p∗1(a) ^ ((−1)|c||b|p∗1(b) ^ p∗2(c)) ^ p∗2(d))

= p∗1(a) ^ p∗1(b) ^ p∗2(c) ^ p∗2(d)

= f(a⊗ b) ^ f(c⊗ d).

The fourth to last equality holds because the cup product is supercommutative. The third to last
equality holds because |c| = |p∗1(c)| and |b| = |p∗2(b)|. This establishes that f is a ring homomorphism.

3.3 Cohomology Ring of Product of Spaces

Our goal at this point is to understand the cohomology ring of a product space X × Y in terms of the
cohomology rings of X and Y . To do this, the map f induced by the cross product is the essential tool:
f : (

⊕
n≥0H

n(X)) ⊗ (
⊕

n≥0H
n(Y )) →

⊕
n≥0H

n(X × Y ). Where the domain of f has been given the
ring structure as described in the previous section, we have that f is a ring homomorphism. We claim
under suitable conditions that f is an isomorphism. This will give us a way of computing the cohomology
ring of X × Y .

The exact claim we make is as follows: If X and Y are cell complexes and Hn(Y ) is a free and finitely
generated R-module for all n, then f is a ring isomorphism. We will omit the proof of this because
of space. We will, however, show an example of how this claim fails if we drop the finitely generated
requirement.
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3.4 Importance of Hn(Y ) being Finitely Generated

Obviously, it doesn’t matter if we require Hn(X) to be free and finitely generated for all n instead of
Hn(Y ). However, if neither Hn(X) nor Hn(Y ) is finitely generated, f need not be an isomorphism in
general.

For example, let X be the space consisting of the positive integers with the discrete topology. Let
Y = X. We have that neither H0(X) nor H0(Y ) are finitely generated R-modules. We will show that
the map f is not surjective. Let ψ be the 0-cocycle defined by ψ([v]) = 1 for v = (i, i) with i ∈ Z+, and
φ([v]) = 0 for all other v. To show that there is no element of (

⊕
n≥0H

n(X))⊗ (
⊕

n≥0H
n(Y )) that f

maps to ψ, it suffices to show that no element of H0(X)⊗H0(Y ) gets mapped to ψ.
An element of H0(X)⊗H0(Y ) can be written in the form φ1 ⊗ φ′1 + ...+ φn ⊗ ψ′n where φ1, ..., φn ∈

H0(X) and φ′1, ..., φ
′
n ∈ H0(Y ). Since X is discrete, each homology class in H0(X) consists of just a

single function that can be represented by a function from X to R. Because of this, for simplicity we
will identify H0(X) with the set of functions from X to R. The same can be said about H0(Y ) and
H0(X × Y ). Let n be arbitrary. We will show that if φ1, ..., φk are functions from X to R and φ′1, ..., φ

′
k

are functions from Y to R, and the function f(φ1 ⊗ φ′1 + ...+ φk ⊗ φ′k) = φ1φ
′
1 + ...+ φkφ

′
k sends every

element of the set {(1, 1), ..., (n, n)} to 1 ∈ R and every other element of X × Y to 0 ∈ R, then it must
be that k ≥ n.

Suppose that this is not the case. Let k < n and φ1, ..., φk, φ′1, ..., φ
′
k be the appropriate functions.

Consider the functions φ1, ..., φk restricted to the domain {1, ..., n}. These functions can be represented
by column vectors v1, ..., vk. Consider the functions φ′1, ..., φ

′
k restricted to the domain {1, ..., n}. These

functions can be represented by row vectors v′1, ..., v
′
k. The function φ1φ

′
1 + ... + φkφ

′
k restricted to the

domain {(i, j) : 1 ≤ i ≤ n, 1 ≤ j ≤ n} can be represented by the n × n matrix v1v
′
1 + ... + vkv

′
k. By

hypothesis, this is the n × n identity matrix (over R). Let F be the field of fractions of R. The n × n
identity matrix has rank n over F . Each of the matrices viv

′
i have rank 1 over F . It is an elementary

fact from linear algebra that the sum of k matrices with rank 1 over F has rank at most k over F . Since
k < n, this is a contradiction. This completes the proof.

3.5 Checking the Cohomology Ring of S1 × S1

Previously, we computed the (simplicial) cohomology ring of a triangulation of S1×S1. We can give S1 a
cell complex structure. The cohomology of S1 as a cell complex is the same as what we computed earlier:
H0(S1) = Z, H1(S1) = Z. Let a0 be a generator for H0(S1) and let a1 be a generator for H1(S1). We
have the following:

a0 ^ a0 = a0

a0 ^ a1 = a1

a1 ^ a0 = a1

a1 ^ a1 = 0.

Let A =
⊕1

n=0H
n(S1). We have that a0 and a1 are generators for A. This means that a0 ⊗ a0,

a0 ⊗ a1, a1 ⊗ a0, and a1 ⊗ a1 are generators for A⊗A. Let g, f1, f2, h ∈ A⊗A be defined as follows:

g = a0 ⊗ a0

f1 = a1 ⊗ a0

f2 = a0 ⊗ a1

h = a1 ⊗ a1

Notice that these elements have been named to be reminiscent of the variable names we used when
computing the simplicial cohomology of S1 × S1. Recall that multiplication of simple tensors in A⊗ A
is given as follows: (a⊗ b)(c⊗ d) = (−1)|b||c|(ac⊗ bd). Multiplication in A⊗A is given as follows:

gg = (a0 ⊗ a0)(a0 ⊗ a0) = (a0 ^ a0)⊗ (a0 ^ a0) = a0 ⊗ a0 = g

gf1 = (a0 ⊗ a0)(a1 ⊗ a0) = (a0 ^ a1)⊗ (a0 ^ a0) = a1 ⊗ a0 = f1

f1g = f1

gf2 = f2
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f2g = g2

gh = (a0 ⊗ a0)(a1 ⊗ a1) = (a0 ^ a1)⊗ (a0 ^ a1) = a1 ⊗ a1 = h

hg = h

hf1 = (a1 ⊗ a1)(a1 ⊗ a0) = (−1)(a1 ^ a1)⊗ (a1 ^ a0) = (−1)0⊗ a1 = 0

f1h = 0

hf2 = 0

f2h = 0

hh = (a1 ⊗ a1)(a1 ⊗ a1) = (−1)(a1 ^ a1)⊗ (a1 ^ a1) = (−1)0⊗ 0 = 0.

Most interestingly, we have the following:

f1f2 = (a1 ⊗ a0)(a0 ⊗ a1) = (a1 ^ a0)⊗ (a0 ^ a1) = a1 ⊗ a1 = h

f2f1 = (a0 ⊗ a1)(a1 ⊗ a0) = (−1)(a0 ^ a1)⊗ (a1 ^ a0) = (−1)a1 ⊗ a1 = −h.

We have now completely described the ring structure of A ⊗ A. In general, if we know the ring
structure of both A and B, then we can compute the ring structure of A⊗B.

Since we are in the situation that each Hn(S1) is a free and finitely generated Z-module, we have
that the ring homomorphism f : A⊗A→

⊕
n≥0H

n(S1 × S1) is an isomorphism. Thus, g̃ = f(g), f̃1 =

f(f1), f̃2 = f(f2), and h̃ = f(h) generate
⊕

n≥0H
n(S1 × S1). Notice that the multiplication of the

elements g̃, f̃1, f̃2, and h̃ with each other agrees with the multiplication of the simplicial cochains g, f1, f2,
and h we studied when looking at a triangulation of S1×S1. It should be clear that once this isomorphism
between A⊗A and

⊕
n≥0H

n(S1×S1) is established, it takes much less work to compute to cohomology

ring of S1 × S1 using A⊗A rather than performing simplicial calculations.

4 Notes

This paper follows the development of the cup product as is done in Hatcher’s Algebraic Topology. The
computation of the simplicial cohomology ring of S1 × S1 follows the example given in class. Some
arguments involving cohomology of simplicial complexes can be found in Elements of Algebraic Topology
by Munkres. The example of the importance of the cohomology groups being finitely generated when
trying to compute the cohomology ring of a product of spaces is an exercise given in Hatcher.
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