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Background

Here is a relatively simple problem from an analysis class that I managed to prove in a bizzare way. This
proof has to deal with an anoying “off-by-one” error.

Theorem

If {a,}52; is a sequence of positive real numbers such that > -, a,, = oo, then
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Proof

There are two cases: either there exists infinitely many n such that a,, > a1 + ... + a,,—1 or there does not.
If there does, then for each such n we have
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and so there are infinitely many terms of
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that are > % so the sum diverges and hence the theorem holds. Thus, assume that for all but finitely many
n that a1 + ... + an—1 > a,. This gives us the following lemma we need to fix an “off-by-one” issue later:
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Lemma: For all but finitely many n, PP —— 2a1+___+an.

Proof: For each m such that a3 + ... + ap—1 > ay, we have 2(a; + ... + ap—1) > a1 + ... + a,, and so

a1+_”ian71 < 2a1+_.1.+an. Since a; + ... + a,—1 > a, holds for all but finitely many n, the lemma follows. [J

Now for the main part of the proof: Define f : RT™ — RT by f(z) = a|z41) (l] is the greatest integer
function). We have:
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We also have the following bound that holds for all but finitely many n (because of the final inequality that

uses the above lemma):
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Since this inequality holds for infinitely many n we have
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This completes the theorem. O



