Interesting Series Divergence Proof

Dan Hathaway

March 2010

Background

Here is a relatively simple problem from an analysis class that I managed to prove in a bizzare way. This proof has to deal with an anoying "off-by-one" error.

Theorem

If $\left\{a_{n}\right\}_{n=1}^{\infty}$ is a sequence of positive real numbers such that $\sum_{n=1}^{\infty} a_{n}=\infty$, then

$$
\sum_{n=1}^{\infty} \frac{a_{n}}{\sum_{i=1}^{n} a_{i}}=\infty
$$

Proof

There are two cases: either there exists infinitely many n such that $a_{n} \geq a_{1}+\ldots+a_{n-1}$ or there does not. If there does, then for each such n we have

$$
\frac{a_{n}}{a_{1}+\ldots+a_{n}} \geq \frac{1}{2}
$$

and so there are infinitely many terms of

$$
\sum_{n=1}^{\infty} \frac{a_{n}}{a_{1}+\ldots+a_{n}}
$$

that are $\geq \frac{1}{2}$ so the sum diverges and hence the theorem holds. Thus, assume that for all but finitely many n that $a_{1}+\ldots+a_{n-1}>a_{n}$. This gives us the following lemma we need to fix an "off-by-one" issue later:

Lemma: For all but finitely many $n, \frac{a_{n}}{a_{1}+\ldots+a_{n-1}} \leq 2 \frac{a_{n}}{a_{1}+\ldots+a_{n}}$.
Proof: For each n such that $a_{1}+\ldots+a_{n-1} \geq a_{n}$, we have $2\left(a_{1}+\ldots+a_{n-1}\right) \geq a_{1}+\ldots+a_{n}$ and so $\frac{1}{a_{1}+\ldots+a_{n-1}} \leq 2 \frac{1}{a_{1}+\ldots+a_{n}}$. Since $a_{1}+\ldots+a_{n-1}>a_{n}$ holds for all but finitely many n, the lemma follows.

Now for the main part of the proof: Define $f: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$by $f(x)=a_{\lfloor x+1\rfloor}(\lfloor x\rfloor$ is the greatest integer function). We have:

$$
\begin{gathered}
\sum_{n=1}^{\infty} a_{n}=\infty \Rightarrow \int_{0}^{\infty} f(x) d x=\infty \Rightarrow \lim _{n \rightarrow \infty} \int_{0}^{n} f(x) d x=\infty \\
\Rightarrow \lim _{n \rightarrow \infty} \log \left(\int_{0}^{n} f(x) d x\right)=\infty \Rightarrow \lim _{n \rightarrow \infty} \int_{1}^{n}\left[\frac{d}{d y} \log \left(\int_{0}^{y} f(x) d x\right)\right] d y=\infty \\
\Rightarrow \lim _{n \rightarrow \infty} \int_{1}^{n} \frac{f(y)}{\int_{0}^{y} f(x) d x} d y=\infty
\end{gathered}
$$

We also have the following bound that holds for all but finitely many n (because of the final inequality that uses the above lemma):

$$
\begin{gathered}
\int_{1}^{n} \frac{f(y)}{\int_{0}^{y} f(x) d x} d y \leq \int_{1}^{n} \frac{f(y)}{\int_{0}^{\lfloor y\rfloor} f(x) d x}=\int_{1}^{n} \frac{f(y)}{\sum_{i=1}^{\lfloor y\rfloor} a_{i}} d y \\
\leq \int_{1}^{\lceil n\rceil} \frac{f(y)}{\sum_{i=1}^{\lfloor y\rfloor} a_{i}} d y=\sum_{j=1}^{\lceil n\rceil-1} \frac{a_{j+1}}{\sum_{i=1}^{j} a_{i}}=\sum_{k=2}^{\lceil n\rceil-2} \frac{a_{k}}{\sum_{i=1}^{k-1} a_{i}} \leq 2 \sum_{k=2}^{\lceil n\rceil-2} \frac{a_{k}}{\sum_{i=1}^{k} a_{i}}
\end{gathered}
$$

Since this inequality holds for infinitely many n we have

$$
\lim _{n \rightarrow \infty} \int_{1}^{n} \frac{f(y)}{\int_{0}^{y} f(x) d x} d y=\infty \Rightarrow \lim _{n \rightarrow \infty} 2 \sum_{k=2}^{\lceil n\rceil-2} \frac{a_{k}}{\sum_{i=1}^{k} a_{i}}=\infty \Rightarrow \sum_{n=1}^{\infty} \frac{a_{n}}{\sum_{i=1}^{n} a_{i}}=\infty
$$

This completes the theorem.

