Fixed Points of an Integral Transformation With a Triangular Kernel

Dan Hathaway

March 2010

Background

Here is a relatively simple problem from functional analysis that I managed to prove in an odd way. Perhaps this sort of argument is standard.

Theorem

Let X be the set of all (integrable) functions from [0,1] to \mathbb{R} . If $F: X \to X$ is defined by

$$F(f)(x) = \int_0^1 f(t)K(t,x)dt$$

where K is continuous and triangular (t > x implies K(t, x) = 0), then F has no non-trivial fixed points.

Proof

Suppose that f is a non-trivial fixed point of F. Since F maps functions to continuous functions, f must be continuous. Let $\tilde{x} = \inf\{x : f(x) \neq 0\}$. Note: $f(\tilde{x}) = 0$. Before proceeding, we need a lemma:

Lemma: Given any $x'' > \tilde{x}$ there is x' s.t. $\tilde{x} < x' \le x''$ and $|f(x)| \le |f(x')|$ for all $x \in [\tilde{x}, x']$. *Proof*: Just choose x' to be the least x that maximizes |f(x)| in $[\tilde{x}, x'']$, which exists because the interval is compact and f is continuous. Note: $x' > \tilde{x}$ and |f(x')| > 0 because of the way \tilde{x} was chosen. \Box

We are now ready to prove the theorem. Let $M = \max\{|K(t,x)| : t, x \in [0,1]\}$. Let $x'' = \min\{\tilde{x} + \frac{1}{2M}, 1\}$. Apply the above lemma to get x' with the specified properties. We have $F(f)(x') = f(x') \neq 0$ (because |f(x')| > 0). On the other hand,

$$F(f)(x')| = \left|\int_{0}^{1} f(t)K(t,x')dt\right| = \left|\int_{\tilde{x}}^{x'} f(t)K(t,x')dt\right|$$
$$\leq |x' - \tilde{x}||f(x')|M \leq \frac{1}{2M}|f(x')|M = \frac{1}{2}|f(x')|.$$

This is a contradiction.