
Fractal Block World 1.01.27

Creation Manual

by Dan Hathaway

April 5, 2025

Contents

1 Introduction 12
1.1 An Important Link . 12
1.2 Two Types of Packages . 12
1.3 Your Package . 12
1.4 dependencies.txt (Mandatory) . 13
1.5 Dependencies Example . 14
1.6 Mods and a Simple Texture Pack Example 14
1.7 The file About/install dir.txt (Mandatory) 14
1.8 The file About/mod for.txt (Mandatory) 15
1.9 About/about.txt and About/thumbnail.jpg 15
1.10 Subdirectories . 15
1.11 Errors (causing the program to exit) 16

1.11.1 System Errors . 16
1.11.2 Hard User Errors . 16
1.11.3 Soft User Errors . 16

1.12 Lua-to-C API’s . 17
1.12.1 Chunk Generation API 17
1.12.2 Initialization API . 17
1.12.3 Game API . 17

2 Textures, Meshes, and Sounds 19
2.1 Textures . 19
2.2 Meshes . 20
2.3 Sounds . 20

3 Block Lua Scripts Part 1: Intro and Some Chunk Creation 21
3.1 The WorldNodes Directory . 21

3.1.1 WorldNodes/StartingConfig 22
3.1.2 WorldNodes/Nodes . 23
3.1.3 WorldNodes/Helpers . 24

3.2 Block Naming Conventions . 25
3.3 The 3 Necessary Functions . 25

3.3.1 Function #1: p. get is solid 25
3.3.2 Function #2: p. get tex 26

2

CONTENTS 3

3.3.3 Function #3: p. main . 26
3.3.4 What Does the “p.” Mean? 27
3.3.5 Omitting the “block ” prefix for a block type 27
3.3.6 What does the double underscore mean? 28

3.4 The clear all Function . 28
3.5 Basic Block Functions . 28

3.5.1 set default block . 28
3.5.2 clear blocks . 29
3.5.3 set pos . 29
3.5.4 get pos . 30

3.6 Pseudo Random Functions . 30
3.6.1 srand . 30
3.6.2 randf . 31
3.6.3 randi . 31

3.7 Getting Chunk Generation Input 31
3.8 Generating Pseudo Random Seeds 35

3.8.1 seed normal . 35
3.8.2 seed nearby . 36
3.8.3 seed xy, seed xz, seed yz 37
3.8.4 chop type seed functions 37
3.8.5 seed from last of type . 38

3.9 Blue Type Functions . 38
3.10 Block Variables . 39
3.11 Environment Rects . 39

3.11.1 add env rect . 39
3.12 Basic Entities . 39

3.12.1 add bent . 39
3.12.2 add bent i . 40
3.12.3 add bent s . 40
3.12.4 bent set param i . 41
3.12.5 bent set param s . 41

3.13 Moving Entities . 41
3.13.1 add ment . 41
3.13.2 ment start . 42
3.13.3 ment set b, ment set i, ment set f, ment set v, ment set s 42
3.13.4 ment end . 42

4 Block Lua Scripts Part 2: More Chunk Creation 43
4.1 The Full Chunk Generation Lua-to-C API 43
4.2 Getting and Setting Chunk Variables 48
4.3 More Block Functions . 49

4.3.1 create rect . 49
4.3.2 create sprinkles . 50

4.4 Exotic Block Functions: Mazes 50
4.4.1 Creating a Maze . 50
4.4.2 Basic Querying of the Maze 51

CONTENTS 4

4.4.3 Example . 51
4.4.4 More Querying of the Maze: Part 1 53
4.4.5 More Querying of the Maze: Part 2 53

4.5 Exotic Block Functions: Caves 53
4.5.1 Cave Creation . 54
4.5.2 Querying the Caves: Part 1 55
4.5.3 Example . 55
4.5.4 Querying the Caves: Part 2 56

4.6 Block Types . 58
4.7 Xar Chunk Generation . 59
4.8 Debugging . 60

4.8.1 print . 60
4.8.2 exit . 60
4.8.3 dump lua env . 60

5 Block Lua Scripts Part 3: Type Init Functions 61
5.1 More Block Lua Module Functions 61
5.2 p. type init . 62
5.3 p. get is solid . 62
5.4 p. get is solid physically, etc . 63
5.5 p. get is solid visibly glass . 64
5.6 p. get tex x pos, p. get tex x neg, etc 65
5.7 p. get inv tex x pos, p. get inv tex x neg, etc 66

6 Block Lua Scripts Part 4: Game Functions (Auxiliary Block
Functions) 67
6.1 Even More Block Lua Module Functions 67
6.2 on close . 68
6.3 on adj block changed . 68
6.4 change to . 68
6.5 get can use . 69
6.6 get use msg . 69
6.7 on use . 69
6.8 on use2 . 69
6.9 on chunk update . 69

7 STD Lua Chunk Generation Helpers 70
7.1 More Block Functions . 70

7.1.1 std.create center . 70
7.1.2 std.create tube . 71
7.1.3 std.create half tube . 71
7.1.4 std.create edges . 72
7.1.5 std.create shell . 72
7.1.6 std.create 2x2 door . 72

CONTENTS 5

8 In Game Tools 73
8.1 The Path Command . 73
8.2 The Script Command . 73
8.3 The Gendoc Command . 73

9 Coordinates 75
9.1 The Chunk Tree (and the Active Chunk Tree) 75
9.2 Viewer Centric Position . 75
9.3 Ways to describe the position of a chunk 76
9.4 Ways to describe the position of a block 76

9.4.1 chunk path . 76
9.4.2 level + vcp . 77
9.4.3 chunk id . 77

9.5 Level and local positions (for vectors) 77
9.5.1 Local positions . 77
9.5.2 Level positions (LP) . 77

9.6 Block Positions (BP) and Local Block Positions (LBP) 78
9.6.1 Local Block Positions (LBP) 78
9.6.2 Block Positions (BP) . 79

10 Environment Rect Lua Scripts 80
10.1 Environment Rect Lua Script Module Functions 80

10.1.1 p. on touch . 81
10.2 Disclaimer . 81

11 Basic Entity Lua Scripts 82
11.1 Initialization BEnt Script Functions 82
11.2 Game BEnt Script Functions . 82
11.3 Initialization Functions . 83

11.3.1 p. get mesh . 83
11.3.2 p. get mesh2 . 83
11.3.3 p. get pulsates . 84
11.3.4 p. get scale . 84
11.3.5 p. get touch dist . 84

11.4 Game Functions . 84
11.4.1 p. on touch . 85
11.4.2 p. get can use . 85
11.4.3 p. get use msg . 85
11.4.4 p. on use . 86
11.4.5 p. on use2 . 86
11.4.6 p. on render . 86

11.5 An example . 87

CONTENTS 6

12 Moving Entity Lua Scripts 89
12.1 Roaming vs Non-Roaming Moving Entities 89
12.2 Type IDs, Instance IDs, and Code IDs 89
12.3 Initialization MEnt Script Functions 90
12.4 Game MEnt Script Functions . 90

12.4.1 type init . 91
12.4.2 on add to live world . 92
12.4.3 on update . 92
12.4.4 on alarm . 92
12.4.5 on die . 93
12.4.6 on too fine . 93
12.4.7 on block hit . 93
12.4.8 on block hit nonfertile 94
12.4.9 on ment hit . 95
12.4.10 on level travel . 96
12.4.11 on closest . 96
12.4.12 get can use . 97
12.4.13 get use msg . 97
12.4.14 on use . 98
12.4.15 on use2 . 98
12.4.16 on render . 98

12.5 Moving Entity Vars Overview . 98
12.5.1 Static variables . 99
12.5.2 Revert lengths . 99
12.5.3 Built-in variables . 99

12.6 List of all moving entity built-in vars 99
12.7 Explanation of all moving entity built-in vars 102

12.7.1 disable saving . 102
12.7.2 from world gen . 102
12.7.3 grounded . 102
12.7.4 grounded offset . 102
12.7.5 grounded offset old . 102
12.7.6 ttl, ttl grounded, game end time 103
12.7.7 respawn length . 104
12.7.8 add to live world time 104
12.7.9 extra min levels, extra max levels 104
12.7.10 start level, min level, max level 104
12.7.11 level, chunk id . 105
12.7.12 offset, offset old . 105
12.7.13 vel . 105
12.7.14 mesh . 105
12.7.15 alpha . 106
12.7.16 tex override . 106
12.7.17 min render dist, max render dist 106
12.7.18 max screen size, max screen size time len 107
12.7.19 team id source, team id target 107

CONTENTS 7

12.7.20 collides . 107
12.7.21 solid wrt player . 108
12.7.22 point block correct and ment correct 108
12.7.23 radius, radius lvlinv 108
12.7.24 homing, etc . 109
12.7.25 gas cloud period, etc . 109
12.7.26 turn speed, turn towards player, turning disabled . . 110
12.7.27 mesh fixed frame, mesh fixed frame vX 110
12.7.28 towards viewerXXX and dist to viewerXXX 110
12.7.29 death animXXX . 111

13 Window Lua Scripts 113
13.1 Introduction . 113

13.1.1 Window IDs (WIDs) . 113
13.1.2 Stacks vs Sets . 113

13.2 Main Menu Windows . 114
13.2.1 p. get name . 114
13.2.2 p. on start . 114
13.2.3 p. on end . 115
13.2.4 p. process input . 115
13.2.5 p. render . 116
13.2.6 p. update always . 116
13.2.7 An Example . 116

13.3 Game Windows . 117
13.4 HUD Windows . 118

14 Game Lua Scripts 119
14.1 Introduction . 119
14.2 All top.lua Module Functions . 119
14.3 top. new game . 120
14.4 top. load game . 120
14.5 top. reboot game . 121
14.6 top. update . 121
14.7 top. update passive . 121
14.8 top. update discrete pre . 121
14.9 top. update discrete post . 121
14.10top. game input . 122
14.11top. game input get all cmds . 123
14.12top. game input get help str . 123
14.13top. killed player . 123
14.14top. respawn player . 123
14.15other. load game early . 124
14.16other. load game . 124
14.17The order in which load game functions are called 124
14.18other. update . 124
14.19other. update passive . 125

CONTENTS 8

14.20other. update discrete pre and post 125
14.21other. render augmented . 125

15 The Initialization Lua-to-C API 126
15.1 The Full Initialization Lua-to-C API 126
15.2 Moving Entity (Type) Initialization Functions 127

15.2.1 ia ment new var XXX . 128
15.2.2 ia ment new var XXX perm 129
15.2.3 ia ment new static var XXX 129
15.2.4 ia ment set builtin var XXX 129
15.2.5 ia ment set var saving . 130

15.3 Block (Type) Initialization Functions 130
15.3.1 ia block new var XXX . 131
15.3.2 ia block set builtin var XXX 131
15.3.3 ia block new static var XXX 132

15.4 Block Stacks . 132
15.4.1 Ephemeral block variables 133

16 The Game Lua-to-C API 134
16.1 The 6 Directions and 3 Axes . 134
16.2 The Full Game Lua-to-C API . 135
16.3 Game API: Program Level Functions 150

16.3.1 Pushing and popping the debug stack 151
16.4 Game API: Returning Values From a Function 152
16.5 Game API: Time . 152
16.6 Game API: Pseudo Random Functions 153

16.6.1 Core random functions . 153
16.6.2 Seeds associated to chunks 154

16.7 Game API: Env Vars: Globals 154
16.7.1 Getting env globals . 154
16.7.2 Setting env globals . 156

16.8 Game API: Env Vars: System Vars 156
16.9 Game API: Package State Vars 157
16.10Game API: Dynamic Vars . 159

16.10.1Testing if a dynamic variable exists 159
16.10.2Creating dynamic variables 159
16.10.3Getting dynamic variables 160
16.10.4Setting dynamic variables 160
16.10.5Removing dynamic variables 160
16.10.6 Iterating over dynamic variables 160
16.10.7Dumping dynamic variables 161

16.11Game API: Textures . 162
16.12Game API: Sounds . 162
16.13Game API: Input Binds . 163
16.14Game API: Meshes . 164
16.15Game API: Game Related . 164

CONTENTS 9

16.15.1 ga ga get package name 164
16.15.2 ga ga is cheating enabled 164
16.15.3Hardcore mode . 164
16.15.4 ga genesis . 165
16.15.5 ga kill player . 165

16.16Game API: Use and Look Objects 165
16.17Game API: System HUD Related 166
16.18Game API: Moving The Player Through Chunk Tree 167
16.19Game API: Exploration . 168
16.20Game API: Windows (Part 1) . 169
16.21Game API: Viewer Queries . 169
16.22Game API: Basic Entities . 171

16.22.1Getting and setting basic entities 171
16.22.2 ga bent sphere query . 171
16.22.3 ga search for bent in chunk 172

16.23Game API: Moving Entities (type) 172
16.24Game API: Moving Entities (instance) 173

16.24.1 Creating a moving entity 173
16.24.2 Getting moving entity variables 173
16.24.3 Testing if a variable exists 173
16.24.4 Changing the revert length of a variable 174
16.24.5 Setting moving entity variables 174
16.24.6 Inst ID and code ID . 174
16.24.7 Testing if a moving entity exists 175
16.24.8 Removing a moving entity 175
16.24.9 Getting the type string of a moving entity 175
16.24.10 Getting the level position 175
16.24.11 Getting the starting level level position 175
16.24.12 Getting the level . 175
16.24.13 Getting the level . 176
16.24.14 Getting the radius . 176
16.24.15 Dumping a moving entity 176
16.24.16 Sphere query . 176
16.24.17 Alarms . 177
16.24.18 Dumping all moving entities 177

16.25Game API: Particles . 177
16.25.1Adding a single particle 177
16.25.2Adding a spherical explosion of particles 178
16.25.3Adding a line of particles 178
16.25.4Adding a ring of particles 179

16.26Game API: Blocks (type) . 179
16.26.1Getting information about a block type 179
16.26.2Listing block types . 180

16.27Game API: Blocks (instance) . 180
16.27.1Miscellaneous block functions 180
16.27.2Changing a block . 181

CONTENTS 10

16.27.3Getting block variables 181
16.28Setting block variables . 182

16.28.1Block variables example 182
16.28.2The most common block type 183
16.28.3Searching for blocks . 183

16.29Game API: Respawn Point and Waypoints 183
16.29.1Respawn point . 183
16.29.2Waypoints . 184

16.30Game API: Coordinates: Blocks and Chunks 184
16.30.1base/Game/std.lua . 185
16.30.2From chunk id . 185
16.30.3To chunk id . 186
16.30.4Converting from lbp to bp 186
16.30.5Converting between vcp and bp 186
16.30.6Chunk id to parent chunk id 186
16.30.7Block position to parent block position 187
16.30.8Block position to parent vcp 187
16.30.9Block position to parent chunk id 187
16.30.10Block position to path . 187
16.30.11Block position to lbp . 187
16.30.12Block coordinates example 188

16.31Game API: Coordinates: Vectors 188
16.31.1To level position . 188
16.31.2Converting from one level to another 188
16.31.3Finest chunk containing point 189

16.32Game API: Math . 189
16.33Game API: Movement and Physics 190

16.33.1Setting the camera position 190
16.33.2Moving . 190
16.33.3Gravity . 191
16.33.4Setting the body type . 191
16.33.5The character model . 191

16.34Game API: Visibility . 192
16.35Game API: Rendering . 192
16.36Game API: Windows (Part 2) . 195
16.37Game API: Rebooting the Game 195
16.38Game API: File IO . 196
16.39Game API: Accessibility . 197
16.40Game API: Text and Strings . 198
16.41Game API: Windows Clipboard 198

17 The Game Lua-to-C API: Windows 200
17.1 The API . 200
17.2 The Window ID (WID) . 202
17.3 Window management . 202
17.4 Setting Foreground and Background Params 203

CONTENTS 11

17.5 Screen Elements . 204
17.6 Text Box . 205
17.7 Small List Widget . 205
17.8 Text Input Widget . 206
17.9 Mutable Text Box Widget . 206
17.10Cursor and Map Coordinates . 207
17.11Keyboard and Mouse Input without the WID 207
17.12Keyboard and Mouse Input with the WID 208

18 Other Parts of Packages 210
18.1 binds.txt . 210
18.2 dependencies.txt . 211
18.3 globals.txt . 211
18.4 light params.txt . 212

Chapter 1

Introduction

1.1 An Important Link

See the following link

http://danthemanhathaway.com/ComputerGames/FractalBlockWorld/ReleaseMisc/Packages/

for tutorials and guides on making packages.

1.2 Two Types of Packages

There are two types of packages you can make: standalone package, which must
be installed in Data/Packages, and mods for standalone packages which must
be installed in Input/Packages. Often in this document we will assume that the
package is a standalone package.

1.3 Your Package

Within the root folder of the Fractal Block World program, there is a folder
called Data. Within that there is a folder called Packages. To create your own
world, you can start by copying the folder Data/Packages/blank to something
like Data/Packages/myworld.

For safety, never modify the blank package.

You should also never modify the “base” package.
When you create a new game, you can now select the “myworld” package.

You can modify the relevant files within the “myworld” directory and its sub-
directories to create your world. For the rest of this chapter, we assume that
your package is called “myworld”.

12

CHAPTER 1. INTRODUCTION 13

It might be a good idea to include an abbreviation for your package in the
names of .lua files within the package. So for example, if you are making a pack-
age called fun blocks, then you could have the lua files “game fb give health.lua”
and “bent fb armor 25.lua”. This is especially important if you are making a
mod (that way different mods do not accidentally have scripts of the same
name).

Certain files are required to be named certain things because they are entry
points. For example, “Game/top.lua”.

1.4 dependencies.txt (Mandatory)

Your package must contain the file called dependencies.txt in its root directory.
For example, if your package is called myworld and your package is installed in
Data/Packages, then the file Data/Packages/myworld/dependencies.txt must
exist. This file specifies which packages your package depends on. In terms of
what this means, the engine guarantees that the dependencies of your
package are loaded before your package.

While the system supports complicated dependencies, it is best to simply
only depend on the “base” package if you are making a standalone package. So
the dependencies.txt file should read as follows:

wf base

If you are making a mod for a standalone package called foo, your depen-
dencies.txt should read as follows:

wf foo

Note: wf stands for “well-founded”. If X is a well-founded dependency of
the current package, then the package X cannot depend on the current package.

Indeed, there cannot be any “cycles” in the dependencies. For example, it
is not allowed for package X to depend on package Y, package Y to depend on
the package Z, and also package Z to depend on package X.

The dependencies.txt file is used so that those packages listed are loaded
BEFORE your package. So if you have the line “wf xar”, then the xar package
will be loaded before your package.

The dependencies do not need to be “transitive”. That is, if your pack-
age is called X and it depends on Y, which in turn depends on Z, then your
dependencies.txt should list Y but it does not have to list Z.

When the user selects which mods are enabled, they must order the mods
so that all these dependency relations are satisfied.

The order in which you list dependencies in your dependencies.txt actually
does not matter. It is up to the user to order them in the game’s mod selection
GUI.

The following is very important: If you are referring to a package in the
Input/Packages directory in the dependencies.txt file, you much prefix its name
with USER to differentiate it from packages in the Data/Packages directory.

CHAPTER 1. INTRODUCTION 14

1.5 Dependencies Example

Suppose you are making a mod called advanced xar mod and it depends on
another mod called basic xar mod. So, here are the relevant packages:

Data/Pacakges/base

Data/Pacakges/xar

Input/Packages/basic_xar_mod

Input/Packages/advanced_xar_mod

Note that the dependencies.txt of the Data/Packages/xar package is

wf base

Let’s say the dependencies.txt file of the Input/Packages/basic xar mod is

wf xar

Then the dependencies.txt file of Input/Packages/advanced xar mod should
be

wf xar

wf __USER__basic_xar_mod

Actually, the “wf xar” is not needed here in this last file because it is listed
in the basic xar mod, but it doesn’t hurt to be safe.

1.6 Mods and a Simple Texture Pack Example

If instead of making your own standalone package from scratch, you can make
a “mod” for a standalone package (for the xar package let’s say). Instead of
creating a package in Data/Packages you create it in Input/Packages. In this
case, your mod package would depend on xar. See the game’s website for how
to make a mod like this. Specifically, you can follow the link:

http://danthemanhathaway.com/ComputerGames/FractalBlockWorld/ReleaseMisc/Packages/

and see the guide for creating a “texture pack” that will work with the xar
package.

1.7 The file About/install dir.txt (Mandatory)

Your package must contain the file “About/install dir.txt”. It should have ex-
actly one line, which is either “Data/Packages” or “Input/Packages” (with no
quotes), depending on where your package should be installed.

CHAPTER 1. INTRODUCTION 15

1.8 The file About/mod for.txt (Mandatory)

Your package must contain the file “About/mod for.txt”. If your package is a
standalone package, leave this file blank. If you are making a mod for a stan-
dalone package, have the About/mod for.txt contain the name of the standalone
package. For example, if you are making a mod for the xar package, then the
file About/mod for.txt should read as follows:

xar

1.9 About/about.txt and About/thumbnail.jpg

In the file About/about.txt (optional) you can have a small amount of text
which describes your package. This can be seen in the game.

The file About/thumbnail.jpg (optional) should be a 512 by 512 jpeg image
showing off you package. This can be seen in the game.

1.10 Subdirectories

Within Data/Packages/myworld there are the following directories:

� About

� BasicEnts

� EnvRects

� Game

� Meshes

� MovingEnts

� Music

� Sounds

� Textures

� WorldNodes

The directory WorldNodes is where the block data of the world is stored.
Within Data/Packages/myworld there are several files not in directories:

� binds.txt

� dependencies.txt

� globals.txt

CHAPTER 1. INTRODUCTION 16

� light params.txt

The file “binds.txt” specifies what events occur when various keyboard keys or
mouse buttons are pressed.

The file “dependencies.txt” was described in the previous section.
The file “globals.txt” declares game variables that the lua scripts are able

to modify and access.
The file “light params.txt” (optional) is only used if you are making a stan-

dalone package. This file is loaded early on when the package is loaded. Just see
the contents of the file “Data/Packages/xar/light params.txt”. This file speci-
fies the “chunk width” (which for now must be 16), the “version of the package”,
and the “version of the Fractal Block World program” that you designed your
package for. This helps track of how “up to date” the package is with the current
version of the engine.

1.11 Errors (causing the program to exit)

The program can exit from 3 types of errors: system errors, hard user errors,
and soft user errors.

1.11.1 System Errors

System errors are generally due to bugs in the program. Sometimes these result
in the program exiting without displaying an error message. You can go to
the file stdout.txt and go to the end to see what was the error.

1.11.2 Hard User Errors

Hard user errors are caused by bad data given to the engine. “Hard” means
the program will always exit when such an error is encountered. An error
which is detected while loading a package is generally a hard user error (as
opposed to a soft one). For example, a file not being found that was listed in
“sound names.txt” (or “texture names.txt” or “mesh names.txt”) is a hard user
error. Also, if the “get tex” function of a (Lua) block script returns a texture
name that does not exist, this is a hard user error.

1.11.3 Soft User Errors

Soft user errors, like hard user errors, are also caused by bad data given to the
engine. Soft user errors are often more difficult to fix than hard ones. When
the program encounters a soft user error, the program will exit if and only if
the environment variable “engine.exit on error” is set to true. End users should
play the game with engine.exit on error set to false, whereas developers should
set this to true to help to find bugs.

CHAPTER 1. INTRODUCTION 17

1.12 Lua-to-C API’s

There are several Lua APIs that various Lua scripts can call. These API func-
tions are implemented on the C++ side of this program. Here are all the Lua
APIs:

� Chunk Generation API

� Initialization API

� Game API

1.12.1 Chunk Generation API

The Chunk Generation API can only be used by

� Block (Lua) Scripts (WorldNodes/Nodes). More specifically, only by the
“main” function of Block Lua Scripts.

� Helper Functions for Chunk Generation (WorldNodes/Helpers).

1.12.2 Initialization API

The Initialization API is only available when a package is being loaded. For
example, a moving entity specified by the Lua script dragon.lua might call
functions in this initialization API to set various parameters for dragon type
moving entities.

Functions part of the Initialization API start with ia

1.12.3 Game API

The Game API can be used by

� Block Scripts (WorldNodes/Nodes).

� Basic Entites (in BasicEnts/).

� Environment Rects (in EnvRects).

� Game Lua Scripts (modules) (in Game/).

� Moving Entities (in MovingEnts/).

� Windows (in Windows/).

Functions part of the Game API start with ga

For example, Block Scripts have access to all three APIs, but there is a
catch. Functions in Block Scripts are called within different “Lua States”, and

CHAPTER 1. INTRODUCTION 18

only certain APIs can be used within these states. The type init function is
called within the “initialization state”, and so code in that function can call
functions that are part of the Initialization API. For example, a block script
could contain the following lines:

function p.__type_init(id) --Called inside of the "init" Lua state.

ia_block_new_var_i(id, "diamonds", 10) --Part of the init API.

end

The same block script could also contain the following lines:

function p.__main() --Called inside of the "chunk generation" Lua state.

set_default_block("e") --Part of the chunk generation API.

set_pos(7,7,7, "s") --Part of the chunk generation API.

end

Finally, the same block script could also contain the following lines:

function p.__on_use(level, bp) --Called inside of the "game" Lua state.

ga_set_i("player_gold", 500) --Part of the game API.

ga_play_sound("gold") --Part of the game API.

end

However, it would be a mistake to have the following code:

function p.__on_use(level, bp) --Called inside of the "game" Lua state.

set_pos(9,9,9, "s") --Part of the chunk generation API. WRONG!

end

Chapter 2

Textures, Meshes, and
Sounds

2.1 Textures

The directory of your package has a subdirectory called “Textures”. In that
directory, there must be a file called “texture names.txt”. This file lists the
textures files that are part of the package, and assigns a name to each one.

If a name already exists in the system, then the old texture with that name
will be replaced with the new one with that name.

Here is an example of what the file “texture names.txt” can look like:

Here are some textures.

crosshair a cool_crosshair.tga

block_grass _ grass.jpg

block_iron _ FromDad/iron.png

Empty lines, or lines that start with “#”, are comment lines. Every other line
should have exactly 3 strings. The first is the NAME of the texture. This
is how the rest of the game will refer to the texture. The third string is the
FILENAME. This should be a path relative to the directory that contains the
“texture names.txt” file. For example, in the example we have given, the file
“grass.jpg” must be in the same directory as “texture names.txt”. The second
string tells whether the texture has alpha (a) or does not ().

� If the texture has alpha, the file type must be either a “.tga” or “.png”.

� If the texture does not have alpha, the file type must be “.jpg” or “.png”.

It is probably a good idea for textures to always have a width that is a multiple
of 4. The game expects some textures to have alpha and others to not.

19

CHAPTER 2. TEXTURES, MESHES, AND SOUNDS 20

2.2 Meshes

The file Meshes/mesh names.txt is a list of triples. The first element of the triple
is the name of the mesh. This is how the rest of the system refers to the mesh.
The second element is the texture name (listed in Textures/texture names.txt).
The third element is the file path of a wavefront.obj file relative to the Meshes
directory. Here is an example of what Meshes/mesh names.txt might look like:

health_10 health medium_box.obj

health_25 health large_box.obj

Here we see that there are two meshes, named “health 10” and “health 25”.
Both meshes use the texture with the name “health”. One mesh uses the wave-
front.obj file medium box.obj whereas the other mesh uses the wavefront.obj
file large box.obj.

All mesh files must be of the format “wavefront.obj”. See the Internet for
this file format specification. Note: technically the file format supports some
weird things, but the Fractal Block World program only supports the basic stuff.

2.3 Sounds

Sounds are declared in the file “Sounds/sound names.txt”. This is similar
to “Textures/texture names.txt” and to “Meshes/mesh names.txt”. The file
“sound names.txt” might look like:

bullet bullet.ogg

laser laser.ogg

song1 my_favorite_song.mp3

The first string is the NAME of the sound. The second string is the FILENAME
of the sound file. The program supports the following types of files:

� .ogg files (Ogg Vorbis).

� .mp3 files.

Chapter 3

Block Lua Scripts Part 1:
Intro and Some Chunk
Creation

This chapter will discuss the basics of creating the geometry of your own world.
Specifically, we will mainly discuss how to create the chunk generation aspects
of “Block Lua Scripts”. When a block is expanded into a chunk, the main
function of a Block Lua Scripts is called. These Block Lua Scripts are found in
the “WorldNodes/Nodes” directory.

The “ main” function of these Block Lua Scripts have access to an API
intended for the creation of chunks: the Chunk Generation Lua-to-C API.
We will partially explain that API in this chapter, and continue the discussion
in Chapter 4.

The “ main” functions of a Block Lua Script also has access to files in

“WorldNodes/Helpers”.

In particular, the file

“base/WorldNodes/Helepers/std.lua”

has many usual functions that can be used from these Lua scripts. We describe
the functions in this “std.lua” file in Chapter 7.

3.1 The WorldNodes Directory

This chapter will be concerned with the WorldNodes subdirectory of your pack-
age.

21

CHAPTER 3. BLOCK LUA SCRIPTS PART 1 22

3.1.1 WorldNodes/StartingConfig

When a player creates a new game, he selects which package to use. After that,
he selects his starting configuration. These starting configurations are specified
in the WorldNodes/StartingConfig directory. There should be one .txt file for
each starting configuration.

Let’s say, for example, that there are two starting configurations. Then
the directory WorldNodes/StartingConfig should contain the files “1.txt” and
“2.txt”, and the following could be the contents of “1.txt”:

description "Default Starting Configuration"

root_node block_cave_world_top

player_offset 7.5 3 7.5

chunk_path 778_777

The line starting with “description” specifies the name of the starting configu-
ration, and that will appear in the menu when the player is selecting his starting
configuration.

The line starting “root name” specifies the block type of the root of the
world. That is, the world is a tree of chunks. The root chunk of the tree is
created first, and this process is determined by the name of the block type of
the root. In the example above, the following file must exist:

WorldNodes/Nodes/block_cave_world_top.lua

Note that all block scripts in WorldNodes/Nodes must start with “block “.
The line starting “player offset” specifies where the player starts within his
starting chunk. The offset should be a triple (x,y,z) such that x,y,z are all
between 0.0 and 16.0.

Finally chunk path specifies the chunk path of the chunk where the player
initially spawns. The format of the chunk path is a list of triples of hex characters
(for x,y,z) separated by underscores (with the exception that the empty path
is “EMPTY PATH”). To specify the chunk path, the easiest way is to play the
game and fly to the chunk you would like the starting position to be. Then open
the console (press ∼) and enter the command “path dump”. This will output
the chunk path of your current location to Output/path.txt. Open that file and
go to the line that starts “chunk path”. You can then copy that line into the
starting position file.

It is possible to add built-in waypoints that are activated from the beginning
of a new game. This can be done by calling the functions

� ga add waypoint sloppy

� ga add waypoint sloppy in only

from the file “Game/top.lua” in the

new game

function. For example, you can call

CHAPTER 3. BLOCK LUA SCRIPTS PART 1 23

ga_add_waypoint_sloppy("778_777_c5f", "EMERGENCY")

in the new game function. This will add a waypoint called “EMER-
GENCY” to the player’s list of waypoints. Note that the chunk at the location
778 777 c5f must actually have a waypoint entity for this to work.

3.1.2 WorldNodes/Nodes

Every block in the world has a type, which is represented by a string. This string
is the same as the name of the Block Lua Script for the block, without the .lua
at the end. When a block needs to turn into a chunk, the main function of
the appropriate Block Lua Script is called in the WorldNodes/Nodes directory.
These scripts are “Lua Modules”. Each script must end with “.lua”.

For example, suppose there is a block of type “block grass”. Then, when the
block needs to get subdivided into a chunk, the “main” function in the script

WorldNodes/Nodes/block grass.lua

will be called. In general, if a block type is “X”, then its associated chunk
generation main function is the file “WorldNodes/Nodes/X.lua”. Recall that
all block scripts must start with “block ”. Here is what the file “block grass.lua”
might look like:

-- Block type: "block_grass".

-- (Comment lines start with "--").

function p.get_is_solid()

return true

end

function p.get_tex()

return "green_dark"

end

function p.main()

set_default_block("block_r_green")

for x = 0,15 do

for y = 0,15 do

z = 15

set_pos(x,y,z,"block_grass2")

end

end

end

When a grass type block is expanded into a chunk, it is composed of solid
block r green blocks, except for the top layer which consists of block grass2
blocks. This example will be explained more in the section “The 3 Necessary
Functions”.

CHAPTER 3. BLOCK LUA SCRIPTS PART 1 24

Note: the blocks defined in all packages that the current package depends
on are also available. For example, if the current package is called “myworld”
and it depends on the package “forestworld”, and if the file

Data/Packages/forestworld/WorldNodes/Nodes/block big tree.lua

exists, then “block big tree” is a block type that is available to the “myworld”
package.

For this reason, if you are planning on other people using your package as
a dependency for their packages, then avoid common names for block types.
That is, “block grass.lua” is a poor choice for the name of a chunk generation
Lua script. A better choice would be to prefix all block type names with your
initials or something like this. So, if your name is Robert Paulson, then you
could name the grass file “block rp grass.lua”.

3.1.3 WorldNodes/Helpers

You can define helper functions that can be used by any main function of Block
Lua Scripts. When a package is first loaded, all the scripts in the directory
“WorldNodes/Helpers” will be read. Specifically, a “lua state” is created by
processing all these scripts (but the code in the functions in these scripts is not
executed). Then, when the main function of a Block Lua Script is executed,
functions defined in the “Helpers” directory can be used.

For example, suppose there is a file called

WorldNodes/Helpers/my first helpers.lua

and it looks like this:

function p.put_iron_in_middle()

set_pos(7,7,7,"block_iron")

end

Now the main function of any chunk generation script can call the function

my first helpers.put iron in middle()

and the result will be to set the block at position (7,7,7) of the chunk to be of
type “block iron”.

Note: the helper functions defined in all packages that the current package
depends on are also available. So, just like what was said about the names
of chunk generation scripts in the “WorldNodes/Nodes” directory, if you want
others to create packages which depend on your own package, the helper func-
tions that you define should probably by prefixed with something unique. So it
would be better for “my first helpers.lua” to be called “rp my first helpers.lua”
instead, if your name is Robert Paulson for example. But again, it is probably
better for user created packages to only depend on the “base” package.

CHAPTER 3. BLOCK LUA SCRIPTS PART 1 25

3.2 Block Naming Conventions

Some blocks are solid and are subdivided into 16 by 16 by 16 blocks of the same
type. For example, consider the following chunk generation file “block r concrete.lua”:

function __get_is_solid() return true end

function __get_tex() return "block_concrete" end

function __main() set_default_block("block_r_concrete") end

When a type “block r concrete” block is subdivided, it turns into 16 by 16
by 16 smaller “block r concrete” blocks. For organization purposes, I would
recommend including the “r ” (for “recursive”) in the name .

It is also convenient to have a file called “block s.lua” (“s” for “solid”, and
it is easy to type). The file “block s.lua” should be as follows:

function __get_is_solid() return true end

function __get_tex() return "block_default" end

function __main() set_default_block("block_s") end

Indeed, in Base/WorldNodes/Nodes there is such a file “block s.lua”.
Or you could call it “solid”, totally up to you. It also makes sense to have

a file called “block e.lua” (“e” for “empty”, and it is easy to type). The file
“block e.lua” should be as follows:

function __get_is_solid() return false end

function __get_tex() return "" end

function __main() set_default_block("block_e") end

In Base/WorldNodes/Nodes there is such a file “block e.lua”.

3.3 The 3 Necessary Functions

Consider the file “WorldNodes/Nodes/block grass.lua” presented in the section
about the directory “WorldNodes/Nodes”. This lua script is executed whenever
a “block grass” type block needs to be subdivided to become a chunk. There are
3 functions defined in “block grass.lua”, and these 3 functions must be defined
in every Block Lua Script.

3.3.1 Function #1: p. get is solid

The first function is the function “p. get is solid”:

function p.__get_is_solid()

return true

end

This function is called when the package is first loaded, NOT when a block of
type “grass” is being subdivided into a chunk. And so, this function does NOT

CHAPTER 3. BLOCK LUA SCRIPTS PART 1 26

have access to the chunk generation API. This function should return either
“true” or “false”. If true, then the block is solid and it has a texture associated
to it. If false, then the block is empty (the player can move through it) and it
has no texture associated to it.

Right now solid means both physically solid (the player cannot move through
it) and visibly solid (the player cannot see through it). In the main Fractal Block
World game (Xar) there are some visibly invisible but physically solid blocks
and visa versa. Later we will talk about how to describe such blocks which are
physically solid but not visibly solid or visa versa.

3.3.2 Function #2: p. get tex

The second function is “p. get tex”:

function p.__get_tex()

return "green_dark"

end

Like “p. get is solid”, this function is called once when the package is first
loaded. It should return a string which is the name of the texture associated to
the block type. If “p. get is solid” returns false, then the “p. get tex” function
should either not be defined or should return the empty string, like this:

function p.__get_tex()

return ""

end

3.3.3 Function #3: p. main

The third and most important function that must be defined in each chunk gen-
eration lua script (block script) is “p. main”. Again here is the main function
in our example “block grass.lua”:

function p.main()

set_default_block("block_r_green")

for x = 0,15 do

for y = 0,15 do

z = 15

set_pos(x,y,z,"block_grass2")

end

end

end

Unlike “p. get is solid” and “p. get tex”, this “p. main” function is called
each time a block of type “grass” is subdivided into a chunk. The first thing
this main function does is to call the built in function “set default block”. This
function will be described soon. Next, the function has two nested “for” loops
with the effect of setting the top block layer of the chunk to be “block grass2”

CHAPTER 3. BLOCK LUA SCRIPTS PART 1 27

type blocks. The rest of the blocks in the chunk are of type block r green. The
“set pos” function will also be described soon.

There are various functions which can be called from the main function: Lua
functions built into the language, functions defined in scripts in WorldNodes/Helpers,
and functions in the Chunk Generation Lua API. For the rest of the chapter we
will describe part of the Chunk Generation Lua API. The rest of that API will
be covered in the chapter Chunk Generation Lua Scripts Part 2.

3.3.4 What Does the “p.” Mean?

When the Lua “module” X.lua is loaded into the program, the following two
lines will be prepended to X.lua:

X = {}

local p = X

The modified file is then loaded into a Lua state L (that possibly other modules
have been loaded into). This results in the Lua state L having a new global
table with the name “X”. If the file “X.lua” defined a function “p.foo”, then in
the lua State L, the (global) table “X” will have the member “foo”.

It may not be wise to try to maintain state in a Lua module using a global
Lua variable. It is better to use functions like “get i” and “set i” which modify
an environment variable maintained by the engine. These functions are part of
the Game Lua-to-C API.

3.3.5 Omitting the “block ” prefix for a block type

There are a small number of functions that allow you to omit the “block ” prefix
when referring to block types. Here are some such functions:

� set default block

� set pos

� create rect

This is intended to make writing block scripts less tedious. Here is an example
of what a block script “block grass.lua” might look like:

function p.__get_is_solid() return false end

function p.__get_tex() return "" end

function p.__main()

set_default_block("e")

create_rect("grass", 0,0,0, 15,15,0)

set_pos(7,7,0, "s")

end

Here the block type “e” is really “block e”, “grass” is really “block grass”, and
“s” is really “block s”.

CHAPTER 3. BLOCK LUA SCRIPTS PART 1 28

3.3.6 What does the double underscore mean?

Functions that start with a double underscore are called by the engine. For
example, in the following script,

function p.__get_is_solid() return false end

...

the function get is solid is called by the engine. If a function starts with a
double underscore, it cannot have just any name.

3.4 The clear all Function

void clear_all(string block_type);

This function clears all blocks, basic entities, moving entities, environment
rectangles, etc. The default block type will become block type.

3.5 Basic Block Functions

One of the most important tasks the main function has to do is to specify the
blocks in the chunk. For example, here is a main function that makes all the
blocks be of “block air” type, except one block which is of type “block iron”:

function p.__main()

set_default_block("block_air")

set_pos(7,7,7,"block_iron")

end

3.5.1 set default block

void set_default_block(string block_type);

You should ALWAYS call the “set default block” function at the beginning
of the main function. If you forget to call the set default block function, then
the default block type will be set to a block which is purple with yellow letters
which read as follows:

default block not set.

The function takes one argument, which is the block type to initially use
for the 16 x 16 x 16 blocks within the chunk (as a string). Then, later calls to
“set pos” can change individual blocks.

Note: the implementation of the program stores the blocks within a chunk
in a sparse way. Specifically, the default block type is stored, and every block
in the chunk not of that default type is also stored.

Warning: a call to “set default block” does not replace any blocks created
by “set block” calls. For example, consider the following main function:

CHAPTER 3. BLOCK LUA SCRIPTS PART 1 29

function p.__main()

set_default_block("block_air1")

set_pos(7,7,7,"block_iron")

set_default_block("block_air2")

end

You might think that the second call to “set default block” will replace the iron
block with a block air2 block. This is NOT the case. The final block state will
be that there is an iron block at position (7,7,7), and every other block is of
type block air2. To override all blocks in the chunk to be of type “foo”, use the
create rect(“foo”, 0,0,0, 15,15,15) function or the clear blocks(“foo”) function
described in the next section.

3.5.2 clear blocks

void clear_blocks(string block_type);

This function will remove all blocks from the chunk and replace them with
blocks of the type block type. Calling this function is more efficient than calling
create rect(block type, 0,0,0, 15,15,15). See also the function clear all, which
not only clears all blocks but clears all basic entities, moving entities, environ-
ment rectangles, etc.

3.5.3 set pos

void set_pos(int x, int y, int z, string block_type);

The “set pos” function is used to change an individual block. It is the most
commonly used function.

In our example,

function p.__main()

set_default_block("block_air")

set_pos(7,7,7,"block_iron")

end

the “set pos” function is used to set the block at position (7,7,7) to be of type
“block iron”. The coordinates of a block are always (x,y,z) where x,y,z are
integers between 0 and 15 inclusive.

In the example

function p.__main()

set_default_block("block_air")

set_pos(7,7,7,"block_iron")

set_pos(7,7,7,"block_grass")

end

the position (7,7,7) is initially set to have type “block air”, then it is set to be
of type “block iron”, and finally it is set to have type “block grass”.

CHAPTER 3. BLOCK LUA SCRIPTS PART 1 30

3.5.4 get pos

string get_pos(int x, int y, int z);

Theoretically, by keeping track of which functions you call from the main func-
tion, you should be able to determine the block type of any position within the
chunk. However, to make life easier, the function “get pos” is provided for this
purpose. This function returns the block type of the specified block position.
For example, consider the following:

function p.__main()

set_default_block("block_air")

set_pos(7,7,7,"block_iron")

local block_type = get_pos(7,7,7)

end

The variable “block type” is set to the string “block iron”.
Note: Consider the following modified example:

function p.__main()

set_default_block("air")

set_pos(7,7,7,"iron")

local block_type = get_pos(7,7,7)

end

Then the variable “block type” will still be set to “block iron”. That is, there
will be the “block ” prefix.

3.6 Pseudo Random Functions

Chunks can be generated in a pseudo random fashion. The seed is set by calling
the function “srand”. A pseudo random float is obtained by calling “randf”. A
pseudo random int is obtained by calling “randi”.

3.6.1 srand

void srand(int seed);

This function sets the pseudo random seed. Note: just before the chunk
generation script is executed,

srand(seed normal())

is called. That is, the seed is set using the chunk path of the chunk.
In general, you can call functions to get the chunk generation input (de-

scribed soon) and use that to generate your own pseudo random seed, which you
then pass to srand. There are also several helper functions, like “seed normal”,
“seed nearby”, etc for creating a seed from the chunk generation input. Note:
this srand function is not the same as the one in the C programming language.

CHAPTER 3. BLOCK LUA SCRIPTS PART 1 31

3.6.2 randf

float randf();

The “randf” function pseudo randomly returns a float between 0.0 and 1.0. The
following main function describes a chunk that has steel in the middle with an
80% probability, and has iron with a 20% probability:

function p.__main()

set_default_block("block_air")

if (randf() < 0.8) then

set_pos(7,7,7,"block_steel")

else

set_pos(7,7,7,"block_iron")

end

end

Note that these are pseudo random functions. So if you visit this chunk,
then go far away and come back, the chunk will be generated again in the same
way it was generated before. So if there was steel in the middle before, there
will be steel in the middle again.

However, if there are two chunk locations with the same block type, then
although the same chunk generation script will be executed, the pseudo random
seed for the chunk, given by seed normal(), will probably be different. So the
chunks would look different.

3.6.3 randi

int randi(int min_value, int max_value);

The “randi” function returns a pseudo random int between min value and
max value inclusive. The following main function describes a chunk with a
single iron block at a random position:

function p.__main()

set_default_block("block_air")

local x = randi(0,15)

local y = randi(0,15)

local z = randi(0,15)

set_pos(x,y,z,"block_iron")

end

3.7 Getting Chunk Generation Input

int get_level();

int get_input_path_length();

PATH get_input_path();

CHAPTER 3. BLOCK LUA SCRIPTS PART 1 32

BTS get_input_path_bts();

string get_input_path_bt(int level);

string get_input_adj_bt(int dx, int dy, int dz);

string get_input_parent_adj_bt(int dx, int dy, int dz);

bool get_input_path_block_var_exists(int level, string var, string type);

bool get_input_path_block_b(int level, string var);

int get_input_path_block_i(int level, string var);

float get_input_path_block_f(int level, string var);

Vector get_input_path_block_v(int level, string var);

string get_input_path_block_s(int level, string var);

The functions get level and get input path length are identical, just with dif-
ferent names. That is, get level returns the level that the chunk is on, which
happens to be the same as the length of the path sequence of the chunk.

In order to generate a chunk, the chunk generation script is allowed access
to the following:

1) the path PATH of the chunk from the root of the chunk tree,

2) the list BTS of block types of the chunks in that path, and

3) the block types of all the chunks in the 5x5x5 region surrounding the
chunk.

4) the block types of all the chunks in the 3x3x3 region surrounding the
parent chunk.

5) the block variables for the chunk being generated and also the parent of
this chunk.

This data can be used to create a seed for “srand”, although some built in
functions like “seed normal” and “seed nearby” do this for you already.

Note: PATH and BTS are arrays that are zero indexed. The list BTS of
block types is 1 longer than the path PATH of the chunk in the chunk tree (the
root of the chunk tree has a block type but no position from its parent, because
it has no parent). That is, BTS[0] is the block type of the root of the chunk
tree, and PATH[0] is the offset of the second chunk (in the path from the root)
from the first (the root chunk). If L is the length of PATH, then BTS has length
L+1 and BTS[L].name is the block type of the chunk that is being generated.

A call to get input path length() returns the length L of PATH. This L
is the same as the result of calling get level(). That is, L is the level of the
chunk. A call to get input path() returns PATH. Then (PATH[0].x, PATH[0].y,
PATH[0].z) is the first element of the path. Here PATH[0].x is an integer. A
call to get input path bts() returns BTS. The following code prints all this input
data.

function p.__main()

set_default_block("block_air")

CHAPTER 3. BLOCK LUA SCRIPTS PART 1 33

len = get_input_path_length()

print("Printing path of chunk from root (chunk path).")

PATH = get_input_path()

for i = 0,len-1 do

pos = PATH[i]

print("Position:")

print(tostring(pos.x)) --pos.x is an integer.

print(tostring(pos.y))

print(tostring(pos.z))

end

print("Printing the types of blocks in this path.")

BTS = get_input_path_bts()

for i = 0,len do --Notice this is len, not len-1

block_type = BTS[i].name --this is a string.

print(block_type)

end

end

If you only want to get a single block type from BTS, you can use the
get input path bt function:

function p.__main()

set_default_block("block_air")

--bt stands for "block type".

local bt_of_chunk = get_input_path_bt(level)

local bt_of_parent = get_input_path_bt(level-1)

-- ...

end

That code gets the block type of the chunk being generated, and also the block
type of the parent chunk.

The function get input adj bt gets the block type of a chunk in one of the
5x5x5 nearby chunks. For example, consider the following block with the script
generation file WorldNodes/Nodes/dandelion.lua. The code is such that the
dandelion only grows on top of a grass block:

function p.__get_is_solid() return false end

function p.__get_tex() return "" end

function p.__main()

set_default_block("block_air")

below_type = get_input_adj_bt(0,0,-1)

if below_type == "block_grass" then

--Can actually have a dandelion.

CHAPTER 3. BLOCK LUA SCRIPTS PART 1 34

create_rect("block_green", 7,7,0, 7,7,7)

create_rect("block_yellow", 6,6,6, 8,8,8)

end

end

The function get input parent adj bt gets the block type of one of the chunks
int the 3x3x3 surrounding region of the parent of the chunk being generated.

Next, let us give an example of how to use the functions to get the block
variables of the current chunk and the parent of the current chunk. Here is a
block script “block forest” that has more trees the deeper you go. Every forest
block has a “depth” integer variable associated to it (a block variable), and this
is set by the main function to be one more than the depth of the parent chunk:

function p.__get_is_solid() return false end

function p.__get_tex() return "" end

--The "depth" variable of the block

--determines how many trees it has.

function p.__main()

set_default_block("block_e")

--Ground.

create_rect("block_forest", 0,0,0, 15,15,0)

--Trees.

local parent_depth = 0 --Will try to set now.

local level = get_level() --Identical to "get_input_path_length".

--Note: should make sure level-1 >= 0.

--

--At this point we could get the block type of the

--parent chunk and make sure it is of type "block_forest".

--This could be done with "local parent_bt = get_input_path_bt(level-1)".

--However instead let us just make sure the parent chunk

--has a depth variable.

if(get_input_path_block_var_exists(level-1, "depth", "i")) then

parent_depth = get_input_path_block_i(level-1, "depth")

end

--Setting the depth var of the block that is the current chunk.

local depth = parent_depth + 1

chunk_set_i("depth", depth)

--Creating trees.

--The greater the depth, the more trees there is.

local num_trees = 2 * depth

for i = 1,num_trees do

local x = randi(0,15)

local y = randi(0,15)

CHAPTER 3. BLOCK LUA SCRIPTS PART 1 35

set_pos(x,y,0, "block_r_green") --Tree.

end

end

--Declaring that forest type blocks have

--and integer variable called "depth".

--These variables are called "block variables".

function p.__type_init(id)

ia_block_new_var_i(id, "depth", 0)

end

Note that the get input path block var exists requires a “type string”. This
should be either “b” for bool, “i” for int, “f” for float, “v” for vector, or “s” for
string. It only looks for a variable with the given name with the given type.

Note that the level passed to either get input path block var exists or one of
the get input path block X functions can only be either get level() or get level()-
1.

3.8 Generating Pseudo Random Seeds

3.8.1 seed normal

int seed_normal();

Just before the chunk generation script is executed,

srand(seed normal())

is called automatically. This causes the pseudo random seed to be set based on
the path of the chunk from the root of the chunk tree, and not on any of the
block types of the chunks in the path. Also, the block types of chunks in the
5x5x5 surrounding region are ignored.

Take for example the following code. Every time the chunk (in the same
location) is created, it will be created the same way. That is, it will either
always have steel or always have iron.

function p.__main()

srand(seed_normal())

set_default_block("block_air")

if (randf() < 0.8) then

set_pos(7,7,7,"block_steel")

else

set_pos(7,7,7,"block_iron")

end

end

Like we said, the “srand(seed normal())” at the beginning of the main function
is not necessary.

CHAPTER 3. BLOCK LUA SCRIPTS PART 1 36

For those that are curious, here is exactly how “seed normal” works: the
program has a list L1 of the first 100 or so prime numbers after 1,000,000. Let
PATH be the chunk path of the chunk from the root of the chunk tree. Consider
the list L2 which is as follows:

PATH[0].x, PATH[0].y, PATH[0].z, PATH[1].x, PATH[1].y, ...

For each n, the program multiplies the n-th element of L1 by the n-th element
of L2. (Once we reach the end of L1, we loop back around). Then, the program
adds all these numbers together. That number is the seed.

3.8.2 seed nearby

int seed_nearby(int dx, int dy, int dz);

This function first calculates the path of a nearby chunk from the root of
the chunk tree. Then it is as if “seed normal” gets called, but using that path
instead. For example, the following could be the main function for a forest type
block:

function p.__main()

srand(seed_normal())

set_default_block("block_air")

for i = 1,10 do

local x = randi(0,15)

local y = randi(0,15)

-- Making a "tree".

set_pos(x,y,0,"block_tree")

end

end

Below a forest type block could be a block of type forest dirt, with the following
main function:

function p.__main()

srand(seed_nearby(0,0,1))

set_default_block("block_dirt")

for i = 1,10 do

local x = randi(0,15)

local y = randi(0,15)

-- Making a "tree root".

set_pos(x,y,15,"block_tree_root")

end

end

The blocks of type “tree” will be above the blocks of type “tree root”. The call
to “seed nearby” with the triple (0,0,1) makes the seed come from the chunk
that is one above in the z direction.

CHAPTER 3. BLOCK LUA SCRIPTS PART 1 37

Note: the reason for the “seed normal” function to ignore block types is so
that the “seed nearby” function can work.

Note: a different way to accomplish this “roots below trees” example is to
use the function “get input adj bt(0,0,1)” in the “tree root” chunk generation
script.

3.8.3 seed xy, seed xz, seed yz

int seed_xy();

int seed_xz();

int seed_yz();

Let PATH be the path of the chunk from the root of the chunk tree. PATH
is a list of triples (x,y,z), where x,y,z are integers between 0 and 15 inclusive.
The function “seed xy” sets the pseudo random seed to be based on the PATH,
however it ignores all z components of the triples. For example, if two chunks
with the same main function as below are on top of one another, the “shafts”
will line up:

function p.__main()

srand(seed_xy())

set_default_block("block_dirt")

-- 10 shafts:

for i = 1,10 do

-- Creating an air shaft.

local x = randi(0,15)

local y = randi(0,15)

for z = 0,15 do

set_pos(x,y,z,"block_air")

end

end

end

3.8.4 chop type seed functions

int seed_normal_chop(int num_chop);

int seed_nearby_chop(int dx, int dy, int dz, int num_chop);

int seed_xy_chop(int num_chop);

int seed_xz_chop(int num_chop);

int seed_yz_chop(int num_chop);

The function “seed normal chop” sets the pseudo random seed using the
path of the chunk from the root of the chunk tree. However, it only uses an
initial segment of the path. For example, if 1 is passed as the argument to
“seed normal chop”, then the last triple (x,y,z) in the path will be ignored. If
2 is passed, then the last two triples will be ignored, etc. The other functions
behave similarly.

CHAPTER 3. BLOCK LUA SCRIPTS PART 1 38

3.8.5 seed from last of type

int seed_from_last_of_type(string block_type);

Let PATH be the path of the chunk from the root of the chunk tree. Let BTS be
the list of block types that occur in this path. Out of all seed functions described,
“set from last of type” is the only one that uses the BTS list to generate a
seed. The function works by first finding the largest index i such that BTS[i]
= block type. Then, the triples PATH[0] through PATH[i-1] inclusive are used
to generate the seed. Said another way, let C be the chunk on the chunk path
PATH farthest away from the root whose block type is block type. Then the
seed is obtained by calling “seed normal” inside C.

This function can be used to create planets where all the treasure rooms
within the planet, no matter how small, all have the same type of treasure. For
example, suppose the block type “block mars like planet” has already been cre-
ated. Here is what the main function of “block mars like planet treasure.lua”
might look like:

function p.__main()

set_default_block("block_dirt")

srand(seed_from_last_of_type("block_mars_like_planet"))

if (randf() < 0.5) then

add_ent(7,7,7,"gold_10")

else

add_ent(7,7,7,"gold_20")

end

end

Within a Mars like planet, either all treasure rooms will have 10 gold, or all
treasure rooms will have 20 gold.

3.9 Blue Type Functions

void set_blue_type_up();

void set_blue_type_down(int x, int y, int z);

void set_blue_type_terminal(int x, int y, int z);

These functions determine the behavior when the player touches a blue ring
device. Here is a summary of how blue ring devices work:

Every chunk in the chunk tree is one of 3 types: A blue UP, a blue DOWN,
or a blue TERMINAL. Once you touch a blue ring, you travel. If you are in a
blue UP chunk, you go up one chunk in the chunk tree (towards the root). If
you are in a blue DOWN chunk, you go down one chunk (to a child specified
by the current chunk). This process repeats until you reach a blue TERMINAL
chunk, at which point you stop.

CHAPTER 3. BLOCK LUA SCRIPTS PART 1 39

The x,y,z in the “set blue type down” function specify which chunk to which
you travel down. The x,y,z in the “set blue type terminal” specify the final block
position of the player (within the current chunk).

3.10 Block Variables

void block_set_b(int x, int y, int z, string var, bool value)

void block_set_i(int x, int y, int z, string var, int value)

void block_set_f(int x, int y, int z, string var, float value)

void block_set_v(int x, int y, int z, string var, Vector value)

void block_set_s(int x, int y, int z, string var, string value)

Use these to set block variables (for blocks that are within the chunk that is
being generated). Note that these variables (if they are not built-in) should be
created in the type init function of the block script of the block that is being
modified (see Block Type Initialization Functions).

3.11 Environment Rects

3.11.1 add env rect

void add_env_ent(

int min_x, int min_y, int min_z,

int max_x, int max_y, int max_z,

string ent_type);

Another type of game entity is a rectangle (box) of blocks (which the user can
possibly move through) that affects the player whenever he touches it. These are
called “environment rects”. Here is a main function that adds a single “death”
rect in the middle of the chunk:

function p.__main()

set_default_block("block_air")

add_env_rect(6,6,6, 8,8,8, "death")

end

A death rect is invisible. As soon as the player touches a death rect, he immedi-
ately dies. The values for the 6 ints given to the function “add env rect” should
all be between 0 and 15 inclusive, with min x less than or equal to max x, etc.

The lua script for the death environment rect can be found in

base/EnvRects/death.lua

3.12 Basic Entities

3.12.1 add bent

void add_bent(int x, int y, int z, string ent_type);

CHAPTER 3. BLOCK LUA SCRIPTS PART 1 40

This is the function used to add basic entities that take no other parameters.
Basic entities do not move. The position of a basic entity is always a block
position. There can only be one basic entity in a block position at a time.

We highly recommend users use blocks instead of basic entities. For example,
a text box block instead of a text box basic entity.

Here is an example of a main function which adds a green shrink ring:

function p.__main()

set_default_block("block_air")

add_ent(7,7,7,"bent_base_ring_green")

end

Here are basic entity type strings, added by the “base” package, that can be
passed to “add bent” as the ent type:

bent_base_save

bent_base_ring_green

bent_base_ring_green_danger

bent_base_ring_red

bent_base_ring_red_danger

bent_base_ring_pink_source

bent_base_ring_pink_dest

bent_base_ring_blue

bent_base_respawn_point

bent_base_waypoint_out_only

bent_base_picture_gato4

Again the package “base” should always be a dependency. If you depend on
other packages, such as “xar”, then you can use all the entities that they define.
But it is advised to only depend on the “base” package.

3.12.2 add bent i

void add_bent_i(

int x, int y, int z, string ent_type,

int int_param);

Some basic entities take in an integer parameter when they are constructed. If
you use the wrong function, add bent s in place of add bent i for example, then
this can result in a bug.

3.12.3 add bent s

void add_bent_s(

int x, int y, int z, string ent_type,

string str_param);

CHAPTER 3. BLOCK LUA SCRIPTS PART 1 41

Some basic entities take in a string when they are constructed. For these
you should use the function “add bent s” to add them. Here are all basic entity
type strings, added by the “base” package, that can be passed to “add bent s”:

bent_base_txt

bent_base_waypoint

bent_base_waypoint_in_only

Here is an example:

function p.__main()

set_default_block("block_air")

msg = "You better have enough rockets. "

.. "Seriously. "

add_ent_s(7,7,7,"bent_base_txt", msg)

end

In the above example, “..” is the string concatenation operator (in the Lua
programming language).

3.12.4 bent set param i

void bent_set_param_i(int x, int y, int z, int new_param_value);

Once you add a basic entity (BEnt) to the current chunk, you can change
its unique integer parameter by calling this function.

3.12.5 bent set param s

void bent_set_param_s(int x, int y, int z, string new_param_value);

Once you add a basic entity (BEnt) to the current chunk, you can change
its unique string parameter by calling this function.

For example, you might have the following code for the chunk main function:

function p.__main()

set_default_block("e") --Empty block.

add_bent_s(2,2,3,"bent_base_txt", "Beware of the warevulves") --I can’t spell.

bent_set_param_s(2,2,3, "Beware of the werewolves")

end

3.13 Moving Entities

3.13.1 add ment

void add_ment(int x, int y, int z, string type);

CHAPTER 3. BLOCK LUA SCRIPTS PART 1 42

This function will add a moving entity (MEnt) centered at the center of the
block (x,y,z) of the current chunk. The type of the ment is specified by the type
variable.

Note that another way to add a ment is with the ment start and ment end
functions.

The scripts for moving entities are put in the MovingEnts directory.

3.13.2 ment start

void ment_start(int x, int y, int z, string type);

With this method of adding a moving entity (MEnt), you first call the
ment start function, then call various functions (such as ment set b) to set pa-
rameters of the ment, then you call ment end which actually adds the ment to
the chunk.

3.13.3 ment set b, ment set i, ment set f, ment set v, ment set s

void ment_set_b(string var_name, bool value);

void ment_set_i(string var_name, int value);

void ment_set_f(string var_name, float value);

void ment_set_v(string var_name, float x, float y, float z);

void ment_set_s(string var_name, string value);

You call these functions after calling ment start but before ment end. This
“set” functions will set the various parameters of a moving entity (MEnt) before
it is added to the current chunk.

“b” stands for bool, “i” stands for int, “f” stands for float, “v” stands for
vector, and “s” stands for string.

3.13.4 ment end

void ment_end();

After you call ment start and then call functions such as ment set b to set
parameters of the moving entity, you call this function ment end to finally add
the moving entity to the chunk.

Chapter 4

Block Lua Scripts Part 2:
More Chunk Creation

In the chapter Block Lua Scripts Part 1, we covered the basics of writing chunk
generation Lua scripts (these are the lua scripts that get called when a block is
expanded into a chunk). We also started to discuss the Chunk Generation API.
We will complete the discussion of that API in this chapter.

Recall that the functions that can be called from the “p. main” function of
a Chunk Generation Script are

1) the functions built into the Lua language,

2) the functions defined in WorldNodes/Helpers, and

3) the functions defined as part of the “Chunk Generation API”.

Some notes: for 1), not actually every function in the Lua language is available.
To see which Lua functions are available, call dump lua env() from the main
function of a Chunk Generation Script. The list of all available functions will
be outputted to “Output/lua env dump.txt”.

For 3), the “Chunk Generation API” is the collection of functions such as
“set pos”. Many of these functions were discussed in the chapter Chunk Gener-
ation Lua Scripts Part 1. In this chapter we will discuss the rest of the functions
in this API.

So far, the only functions we have seen related to block data are “set default pos”,
“set pos”, “get pos”, and “clear blocks”. In this chapter we will see several
more. Although some of these new functions can for the most part be defined
from these old functions, we provide these new functions as built-in for conve-
nience and for speed reasons.

4.1 The Full Chunk Generation Lua-to-C API

We now list the complete “Chunk Generation Lua-to-C API”:

43

CHAPTER 4. BLOCK LUA SCRIPTS PART 2 44

//---

// Clearing Everything

//---

//Clearing all.

void clear_all(string block_type);

//---

// Setting Chunk Variables

//---

//Setting blocks variables of the block

//that is the current chunk being generated.

void chunk_set_b(string var, bool value);

void chunk_set_i(string var, int value);

void chunk_set_f(string var, float value);

void chunk_set_v(string var, Vector value);

void chunk_set_s(string var, string value);

//---

// Setting Block Variables

//---

//Setting block variables (of blocks within the chunk).

void block_set_b(int x, int y, int z, string var, bool value)

void block_set_i(int x, int y, int z, string var, int value)

void block_set_f(int x, int y, int z, string var, float value)

void block_set_v(int x, int y, int z, string var, Vector value)

void block_set_s(int x, int y, int z, string var, string value)

//---

// Blocks

//---

//Basic block functions.

void set_default_block(string block_type);

void clear_blocks(string block_type);

void set_pos(int x, int y, int z, string block_type);

string get_pos(int x, int y, int z);

//More block functions.

void create_rect(

string block_type,

int min_x, int min_y, int min_z,

int max_x, int max_y, int max_z);

void create_sprinkles(

CHAPTER 4. BLOCK LUA SCRIPTS PART 2 45

int min_x, int min_y, int min_z,

int max_x, int max_y, int max_z,

float prob, string block_type);

//Exotic block functions: Mazes.

void maze_start();

void maze_add_vertex(int x, int y, int z);

void maze_add_edge(

int x1, int y1, int z1,

int x2, int y2, int z2);

void maze_end();

bool maze_edge_open(

int x1, int y1, int z1,

int x2, int y2, int z2);

int maze_num_edges_from_vertex(

int x, int y, int z);

POS maze_deepest_vertex(LIST source_vertices);

//Exotic block functions: Caves.

void caves_start();

void caves_set_5x5x5();

void caves_set_num_nodes(

float min_nodes, float max_nodes);

void caves_set_nodes(

float frac_large_node,

float small_node_min_rad,

float small_node_max_rad,

float large_node_min_rad,

float large_node_max_rad);

void caves_set_edges(

float max_edge_dist,

float frac_large_edge,

float small_edge_min_rad,

float small_edge_max_rad,

float large_edge_min_rad,

float large_edge_max_rad);

void caves_end();

bool caves_close_to_node(

int x, int y, int z);

INFO caves_close_to_node2(

int x, int y, int z);

bool caves_close_to_edge(

int x, int y, int z);

//---

// Pseudo Random

CHAPTER 4. BLOCK LUA SCRIPTS PART 2 46

//---

//Pseudo random functions.

void srand(int seed);

float randf();

int randi(int min_i, int max_i);

//---

// Getting Chunk Generation Input

//---

//Getting the input.

int get_level();

int get_input_path_length();

PATH get_input_path();

BTS get_input_path_bts();

string get_input_path_bt(int level);

string get_input_adj_bt(int dx, int dy, int dz);

string get_input_parent_adj_bt(int dx, int dy, int dz);

bool get_input_path_block_var_exists(int level, string var, string type);

bool get_input_path_block_b(int level, string var);

int get_input_path_block_i(int level, string var);

float get_input_path_block_f(int level, string var);

Vector get_input_path_block_v(int level, string var);

string get_input_path_block_s(int level, string var);

//---

// Creating Seeds from Chunk Generation Input

//---

//Pseudo random seeds.

int seed_normal();

int seed_nearby(int dx, int dy, int dz);

int seed_xy();

int seed_xz();

int seed_yz();

int seed_normal_chop(int chop);

int seed_nearby_chop(int dx, int dy, int dz, int chop);

int seed_xy_chop(int chop);

int seed_xz_chop(int chop);

int seed_yz_chop(int chop);

int seed_from_last_of_type(string type);

//---

// Blue Ring Related

//---

CHAPTER 4. BLOCK LUA SCRIPTS PART 2 47

//Blue type.

void set_blue_type_up();

void set_blue_type_down(int x, int y, int z);

void set_blue_type_terminal(int x, int y, int z);

//---

// Environment Rects

//---

//Env rects.

void add_env_rect(

int min_x, int min_y, int min_z,

int max_x, int max_y, int max_z, string type);

//---

// Basic Entities

//---

//Basic ents (BEnts).

void add_bent(int x, int y, int z, string type);

void add_bent_i(int x, int y, int z, string type, int param);

void add_bent_s(int x, int y, int z, string type, string param);

void bent_set_param_i(int x, int y, int z, int new_param_value);

void bent_set_param_s(int x, int y, int z, string new_param_value);

//---

// Moving Entities

//---

//Moving ents (MEnts).

void add_ment(int x, int y, int z, string type);

void ment_start(int x, int y, int z, string type);

void ment_set_b(string key, bool value);

void ment_set_i(string key, int value);

void ment_set_f(string key, double value);

void ment_set_v(string key, float x, float y, float z);

void ment_set_s(string key, string value);

void ment_end();

//---

// Block Types

//---

//Getting information about block types.

bool bt_get_is_solid_physically(string block_type);

CHAPTER 4. BLOCK LUA SCRIPTS PART 2 48

//---

// Xar Chunk Generation

//---

void create_xar_chunk(string bt);

//---

// Debugging

//---

//Debugging functions.

void print(string str);

void exit();

void dump_lua_env();

We will only discuss the functions not already covered in the chapter “Block
Lua Scripts Part 1”.

4.2 Getting and Setting Chunk Variables

The following functions can be used to set the values of block variables for the
block that is the current chunk being generated:

void chunk_set_b(string var, bool value);

void chunk_set_i(string var, int value);

void chunk_set_f(string var, float value);

void chunk_set_v(string var, Vector value);

void chunk_set_s(string var, string value);

For example, the following script “block stone.lua” sets the “health” variable
of the chunk to 78 when the chunk is generated:

function p.__get_is_solid() return true end

function p.__get_tex() return "stone" end

--The "health" variable of the block

--determines how many blocks are generated.

function p.__main()

set_default_block("block_s")

chunk_set_i("health", 78);

end

--Registering that stone blocks

--have a "health" variable.

--We are setting the default value to 100.

CHAPTER 4. BLOCK LUA SCRIPTS PART 2 49

function p.__type_init(id)

ia_block_new_var_i(id, "health", 100)

end

Before the stone block was expanded into a chunk, its health variable could have
been something different. Indeed, its heath variable would have been 100 if no
other changes were made, because that is the default value we specified.

More common than setting chunk variables is getting chunk variables. This
can be accomplished with the get input path block X functions we have already
described. Let us give an example. The following is the script “block concrete.lua”
for a block that has a variable called health. Health is an integer and it is in-
tended to be between 0 and 100 inclusive. The amount of health specifies the
fraction of blocks inside the chunk that are solid:

function p.__get_is_solid() return true end

function p.__get_tex() return "block_room" end

--The "health" variable of the block

--determines how many blocks are generated.

function p.__main()

set_default_block("block_e") --Empty block.

local level = get_level() --Identical to "get_input_path_length".

local health = get_input_path_block_i(level, "health")

--

local frac = health / 100.0

for x = 0,15 do

for y = 0,15 do

for z = 0,15 do

if(randf() < frac) then

set_pos(x,y,z, "block_s") --Solid block.

end

end end end

end

function p.__type_init(id)

ia_block_new_var_i(id, "health", 100)

end

4.3 More Block Functions

4.3.1 create rect

void create_rect(

string block_type,

int min_x, int min_y, int min_z,

int max_x, int max_y, int max_z);

CHAPTER 4. BLOCK LUA SCRIPTS PART 2 50

Calling this function creates a box of blocks, from the block at position (min x,min y,min z)
to the position (max x,max y,max z). Calling

create rect(type, 0,0,0, 15,15,15)

will replace all blocks in the chunk with the block of the specified type.
Note: Calling create rect is faster than calling set pos once for each block in

the box.

4.3.2 create sprinkles

create_sprinkles(

int min_x, int min_y, int min_z,

int max_x, int max_y, int max_z,

float prob, string type);

Calling this function is equivalent to the following:

for x = min_x,max_x do

for y = min_y,max_y do

for z = min_z,max_z do

if(randf() < prob) then

set_pos(x,y,z, type)

end

end

end

end

4.4 Exotic Block Functions: Mazes

These maze creation functions are basic. These are intended for basically a hello
world purpose. We recommend you create your own maze creation functions in
WorldNodes/Helpers if you are making a significantly complicated world.

4.4.1 Creating a Maze

You can create mazes inside the chunk being generated. You create the maze
by first calling “maze start()”, and then you call some functions to set up the
creation of the maze. You then call “maze end()” to finish creating the maze.

void maze_start();

void maze_add_vertex(int x, int y, int z);

void maze_add_edge(int x1, int y1, int z1, int x2, int y2, int z2);

void maze_end()

CHAPTER 4. BLOCK LUA SCRIPTS PART 2 51

After calling “maze start()”, you first add vertices. You must add all vertices
before adding any edges. You add a vertex by calling

maze add vertex(x,y,z).

You specify the x,y,z coordinates of a block within the chunk.
To add an “edge” between two vertices, you call

maze add edge(x1,y1,z1, x2,y2,z2)

where (x1,y1,z1) is the position of one vertex and (x2,y2,z2) is the position of
the other.

Then you call “maze end()”. This will trigger the engine to assign a random
weight to each edge, between 0.0 and 1.0. Then a minimal spanning tree will be
formed. The maze consists of all vertices and all edges in this minimal spanning
tree. Because the result is a tree, there are no “cycles”.

4.4.2 Basic Querying of the Maze

bool maze_edge_open(x1,y1,z1, x2,y2,z2);

Once the maze has been created (after calling “maze end”), to determine
whether an edge is in the minimal spanning tree, call

maze edge open(x1,y1,z1, x2,y2,z2)

where (x1,y1,z1) is the position of one vertex and (x2,y2,z2) is the position of
the other. It returns true iff the edge is in the minimal spanning tree.

4.4.3 Example

Here is an example of the main function of a chunk generation script which
creates a maze:

function p.__main()

set_default_block("block_e") --Empty block.

--The vertices and the edges of the maze

--will be solid (of type "block_s").

--Everything else will be empty (of type "block_e").

--This way if you look at the chunk from the

--distance, you can easily see the maze.

--Start creating the maze.

maze_start()

--Adding vertices to the maze.

--The first for loop starts x at 0 and

CHAPTER 4. BLOCK LUA SCRIPTS PART 2 52

--goes to 15 inclusive, stepping by 2

--each time.

for x = 0,15,2 do

for y = 0,15,2 do

maze_add_vertex(x,y,7)

set_pos(x,y,7,"block_s")

end

end

--Adding edges to the maze.

--Only some of these will remain

--in the final minimal spanning tree.

for x = 0,15,2 do

for y = 0,15,2 do

if (x+2 <= 15) then

maze_add_edge(x,y,7, x+2,y,7)

end

if (y+2 <= 15) then

maze_add_edge(x,y,7, x,y+2,7)

end

end

end

--Finish creating the maze.

maze_end()

--The graph (minimal spanning tree)

--for the maze has been created.

--An edge (between two vertices) is called "open"

--if it is in the final minimal spanning tree.

for x = 0,15,2 do

for y = 0,15,2 do

if (x+2 <= 15) then

if maze_edge_open(x,y,7, x+2,y,7) then

set_pos(x+1,y,7,"block_s")

end

end

if (y+2 <= 15) then

if maze_edge_open(x,y,7, x,y+2,7) then

set_pos(x,y+1,7,"block_s")

end

end

end

end

end

CHAPTER 4. BLOCK LUA SCRIPTS PART 2 53

4.4.4 More Querying of the Maze: Part 1

int maze_num_edges_from_vertex(int x, int y, int z);

The function “maze num edges from vertex” tells you the number of open
edges incident to the given vertex. This is useful for determining which vertices
are “dead ends”.

Note: you could also probably use “get pos” for the same purpose. Note
that you can also use “get input adj bt” within the chunk generation script for
the block that occupies a vertex of the maze.

Here is code that you can add to the example above that colors the dead
ends black:

--Coloring dead ends black.

for x = 0,15,2 do

for y = 0,15,2 do

if maze_num_edges_from_vertex(x,y,7) == 1 then

set_pos(x,y,7,"block_r_black")

end

end

end

4.4.5 More Querying of the Maze: Part 2

POS maze_deepest_vertex(LIST source_vertices);

To use the function “maze deepest vertex”, you first create a list of “source
vertices”. These must all be vertices of the maze. You pass these to the function,
and it will return the position of the vertex that is farthest away from any of
the source vertices. You can add the following code to the main example of this
section to color the deepest vertex brown:

--Making the source positions green.

set_pos(0,0,7,"block_r_green")

set_pos(15,15,7,"block_r_green")

--Putting the source positions into a list.

local sources = {}

sources[1] = {x=0, y=0, z=7}

sources[2] = {x=15, y=15, z=7}

--Making the deepest vertex brown.

local pos = maze_deepest_vertex(sources)

set_pos(pos.x, pos.y, pos.z, "block_r_brown")

4.5 Exotic Block Functions: Caves

CHAPTER 4. BLOCK LUA SCRIPTS PART 2 54

These cave creation functions are basic. These are intended for basically a hello
world purpose. We recommend you create your own cave creation functions in
WorldNodes/Helpers if you are making a significantly complicated world.

There are also functions for creating caves. These are “stick and ball” caves,
meaning there are balls (nodes) connected by tubes (edges). Adjacent chunks
that use the same cave creation code will have caves that connect with each
other in the expected way.

4.5.1 Cave Creation

void caves_start();

void caves_set_5x5x5();

void caves_set_num_nodes(

float min_nodes, float max_nodes);

void caves_set_nodes(

float frac_large_node,

float small_node_min_rad,

float small_node_max_rad,

float large_node_min_rad,

float large_node_max_rad);

void caves_set_edges(

float max_edge_dist,

float frac_large_edge,

float small_edge_min_rad,

float small_edge_max_rad,

float large_edge_min_rad,

float large_edge_max_rad);

void caves_end();

To start creating the caves, you call “caves start()”. There are then a variety
of functions you can call to create the stick and ball style caves.

By default, all sticks and balls in the surrounding 3x3x3 chunks will be
created. The engine accomplishes this by having a way to create all sticks and
balls within any given chunk (using the chunk path of the chunk as input to
the pseudo random number generator). So if there is a node in one chunk and
a node in an adjacent chunk, and if there is an edge between the two nodes, we
can carve out a shaft surrounding the edge that goes between the two nodes.

If you have a node in one chunk A and then a node in a chunk B that is
2 chunks away from B, by default there is no way to have an edge from the
first node to the second one. However, if you call “caves set 5x5x5()” after
“caves start()”, but before “caves end()”, then all sticks and balls in the sur-
rounding 5x5x5 chunks will be created. (Note: the 5x5x5 mode is slower for the
computer than 3x3x3 mode). Nodes that are two chunks away from each other
can then be connected by edges.

The function “caves set num nodes” specifies how many nodes should be

CHAPTER 4. BLOCK LUA SCRIPTS PART 2 55

created in each chunk. You specify the min and the max number, and then
for each chunk the actual number will be chosen at random between the two.
Specifically, the min and max values are floats, a float is chosen at random
between these two, and then the integer floor of that is used.

There are two types of nodes: small ones and large ones. You specify the
radii of these two types of nodes by calling the function “caves set nodes”. You
specify the min and max radius of a small node, and then each small node will
have a radius randomly picked between the min and max. You also specify the
min and max radius of a large node. You also specify the fraction of nodes that
are large.

Each edge has a radius (so each edge is really a tube, or cylinder). You call
“caves set edges” to set the radii of these edges. There are two types of edges:
small and large. You specify the min and max radius of small edges. You do
the same for the large edges. You also specify the fraction of edges that are
large versus small. Finally, you specify the max edge distance. If 3x3x3 mode
is being used and two nodes are in adjacent chunks (or the same chunk), then
they will be connected by an edge iff the distance between them is less than the
max edge distance. If 5x5x5 mode is being used, then the same is true but now
for nodes that are in chunks that are at most 2 chunks apart.

When you are finished specifying the caves, call “caves edge()” to finish
creating the maze.

4.5.2 Querying the Caves: Part 1

bool caves_close_to_node(int x, int y, int z)

bool caves_close_to_edge(int x, int y, int z)

The next step is iterating through every block position P in the chunk to
see if P is inside a node or an edge. You then “carve out” all such block
positions. You call “caves close to node” and “caves close to edge” to see if a
block position is inside a node or edge.

4.5.3 Example

Here is the main function of a chunk generation script that creates some caves.

function p.__main()

--The chunk is by default solid to start with.

set_default_block("block_s")

--Creating the stick-and-ball data

--structure for the caves.

caves_start()

--Making the cave connect

--together nodes that are at most 2 chunks apart

CHAPTER 4. BLOCK LUA SCRIPTS PART 2 56

--(as opposed to 1 chunk apart).

--Setting the 5x5x5 option makes cave creation slower.

caves_set_5x5x5()

--Between 2 and 3 nodes per chunk (random).

caves_set_num_nodes(2.0,3.99)

--Only 0.01 of nodes are large, the rest are small.

--Small nodes have radius between 3.0 and 4.3, and

--large nodes have radius between 17.5 and 18.0.

caves_set_nodes(0.01, 3.0,4.3, 17.5,18.0)

--Max dist between two nodes that can be connected

--with an edge is 20.0 (to go beyond 16.0 for this

--number, must call caves_set_5x5x5).

--No edges are large.

--Small tubes (around edges) have radius between 1.0 and 2.0.

--Large tubes have radius between 7.0 and 8.0.

caves_set_edges(20.0, 0.0, 1.0,2.0, 7.0,8.0)

caves_end()

--Now, the stick-and-ball data structure

--for the caves has been created.

--***

--***

--***

for x = 0,15 do

for y = 0,15 do

for z = 0,15 do

local close = caves_close_to_node(x,y,z)

or caves_close_to_edge(x,y,z)

if close then

--Carving out the position.

set_pos(x,y,z,"block_e")

end

end

end

end

end

4.5.4 Querying the Caves: Part 2

INFO caves_close_to_node2(int x, int y, int z)

CHAPTER 4. BLOCK LUA SCRIPTS PART 2 57

A common task it to add one item to the center of each node in the stick
and ball caves. To do this, you can use the “case close to node2” function which
returns an object data with the following members:

data.close //the result of case_close_to_node

data.which_node //which nodes is closest to

data.dist //distance to closest node

data.is_big //whether the nodes is closest to is "big"

Each node has a number. You can keep track of this so you only place one item
per node. Here is a modification of the cave creation code from this section that
only puts one “gold 10” item in the center of each node. This code should occur
after the “caves end()” function.

--A table, whose keys are the IDs of the nodes

--that have a power up placed in them.

local filled_nodes = {}

for x = 0,15 do

for y = 0,15 do

for z = 0,15 do

local close_to_edge = caves_close_to_edge(x,y,z)

local data = caves_close_to_node2(x,y,z)

local close_to_node = data.close

--Carving the position if need be.

if close_to_node or close_to_edge then

set_pos(x,y,z,"block_e")

end

--Adding gold in the center (for each node).

if close_to_node then

local which_node = data.which_node

local dist = data.dist

local is_big = data.is_big

if (dist < 1.5) and

filled_nodes[which_node] == nil

then

filled_nodes[which_node] = true

add_bent(x,y,z, "bent_gold_10")

end

end

end

end

end

CHAPTER 4. BLOCK LUA SCRIPTS PART 2 58

4.6 Block Types

It is possible for the main function of a block script to get information about
any particular block type. Specifically, the following function returns whether
or not the given block type is (physically) solid:

bool bt_get_is_solid_physically(string block_type);

Here is an example of a block script that creates a dandelion only if the
block type of the chunk below is physically solid:

function p.__get_is_solid() return false end

function p.__get_tex() return "" end

function p.__main()

set_default_block("block_e")

--Getting the block type of the chunk below

--the one being generated.

local below_bt = get_input_adj_bt(0,0,-1)

--Seeing if the block type of the chunk

--below is physically solid.

local below_is_solid = bt_get_is_solid_physically(below_bt);

if(below_is_solid) then

--Can actually have an (Onion the cat) dandelion.

create_rect("block_r_green", 7,7,0, 7,7,7)

create_rect("block_r_onion_the_cat", 6,6,6, 8,8,8)

end

end

Suppose you want block types to have other attributes that these main
functions have access to. This can be accomplished by calling functions of
other blocks scripts. That is, suppose you want your block scripts to have the
function “get is funky” which returns a bool. Here is how a block script can
query whether or not other block types are funky:

function p.is_bt_funky(bt)

local mod_name = bt

local func_name = "get_is_funky"

if(_G[mod_name] and

_G[mod_name][func_name])

then

--Calling the function in the block lua script.

return _G[mod_name][func_name]()

else

--Either the Lua module or the function

CHAPTER 4. BLOCK LUA SCRIPTS PART 2 59

--could not be found.

return false --Not funky.

end

end

4.7 Xar Chunk Generation

void create_xar_chunk(string bt);

This will generate the chunk as if it was of the specified xar block type. That
is, it will run C++ xar chunk generation code. The string bt must start with
XAR_. Here is an example of a block type that is just like a xar small yellow
flower, except there is a solid cube at the top:

--Let this file be called block_new_small_yellow_flower.lua

function p.__get_is_solid() return false end

function p.__get_tex() return "" end

function p.__main()

set_default_block("e")

--Generating the chunk as if

--it was of type XAR_SMALL_YELLOW_FLOWER.

create_xar_chunk("XAR_SMALL_YELLOW_FLOWER")

--Replacing the yellow block in the yellow flower

--with a meme block.

for x = 0,15 do

for y = 0,15 do

for z = 0,15 do

if(get_pos(x,y,z) == "XAR_SMALL_YELLOW_FLOWER_ROOM") then

set_pos(x,y,z, "s") --Solid cement block.

end

end end end

end

Also, see the Xar Block Overrides Guide here

http://danthemanhathaway.com/ComputerGames/FractalBlockWorld/ReleaseMisc/Packages/

for how to replace xar block types with lua Block scripts. For example, you
could have

XAR_SMALL_YELLOW_FLOWER

be replaced with the block

block_new_small_yellow_flower

CHAPTER 4. BLOCK LUA SCRIPTS PART 2 60

that we defined above.

4.8 Debugging

4.8.1 print

void print(string str);

This will print the given string str to standard output. The following will be
prepended at the start of the output line:

Proc world gen: CHUNK_FILENAME.lua:

4.8.2 exit

void exit();

This will exit the program. Before doing so, the following will be printed to
standard output:

Proc world gen: CHUNK_FILENAME.lua: exiting program.

4.8.3 dump lua env

void dump_lua_env();

This will print to Output/lua_env_dump.txt all functions in the current Lua
state that are available.

Chapter 5

Block Lua Scripts Part 3:
Type Init Functions

5.1 More Block Lua Module Functions

In Section 3.3 we saw 3 functions that appear in all Block Lua Scripts:

� __get_is_solid

� __get_tex

� __main

Those 3 functions are mandatory. In this chapter we describe more “module”
functions which can appear in these Block Lua Scripts. The functions that we
describe in this chapter are similar to __get_is_solid and __get_tex.

Moreover, we will list only the functions called in the initialization Lua state.
These functions are called by the engine once for each Block Lua script when
the package is loaded.

Here is a list of such functions:

//---

// The main initialization function fot the block type

//---

void __type_init(id);

//---

// Specifying if the block is solid

//---

bool __get_is_solid(); //Mandatory.

bool __get_is_solid_physically();

61

CHAPTER 5. BLOCK LUA SCRIPTS PART 3 62

bool __get_is_solid_move_body();

bool __get_is_solid_visibly();

bool __get_is_solid_visibly_glass();

//---

// Specifying the texture of the block

//---

string __get_tex(); //Mandatory.

string __get_tex_x_pos();

string __get_tex_x_neg();

string __get_tex_y_pos();

string __get_tex_y_neg();

string __get_tex_z_pos();

string __get_tex_z_neg();

string __get_inv_tex_x_pos();

string __get_inv_tex_x_neg();

string __get_inv_tex_y_pos();

string __get_inv_tex_y_neg();

string __get_inv_tex_z_pos();

string __get_inv_tex_z_neg();

5.2 p. type init

void __type_init(id);

This function is called once (when the package is being loaded) when the
engine is getting information about the block type. It is intended that this
function call Initialization API functions to add variables to the block type.
Here is an example for a “soda machine block”:

function p.__type_init(id)

ia_block_new_var_i(id, "num_cans", 50)

end

See Chapter 15 for more about the Initialization API.

5.3 p. get is solid

bool __get_is_solid();

We already described this function. It must appear in every Block Lua
Script. This function returns whether on not a block is “solid”. However there
are several notions of solid:

CHAPTER 5. BLOCK LUA SCRIPTS PART 3 63

� physically solid

� move body solid

� visibly solid

A chunk is physically solid iff game projectiles cannot move through the
block.

A chunk is move body solid iff the player cannot move through the block.
A chunk is visibly solid iff the player cannot see through the chunk. If blocks

A and B are adjacent, A is NOT visibly solid but B is visibly solid, then the
game will display a square on the side of the B block that faces into the A block.

The get is solid must appear in each Block Lua Script, and then the
functions get is solid physically, get is solid move body, get is solid visibly
should be defined only if they return a value different than the value returned
by get is solid. In this way we can specify whether or not a block is physically
solid, move body solid, and visibly solid.

5.4 p. get is solid physically, etc

bool __get_is_solid_physically();

bool __get_is_solid_move_body();

bool __get_is_solid_visibly();

Use these functions to define whether or not a block is physically solid,
move body solid, and visibly solid. These three attributes are described in the
previous section. Each of these functions only needs to be defined if it returns
a value different from get is solid. Here are some examples:

Here is a block invisible wall.lua which is physically solid, move body solid,
but not visibly solid. In other words, this is an invisible wall that the player
cannot move through or shoot through but the player can see through it. Fur-
thermore, it appears completely invisible:

function p.__get_is_solid() return true end

function p.__get_is_solid_visibly() return false end

function p.__get_tex() return "" end

function p.__main()

set_default_block("block_invisible_wall")

end

Note the following:

The get tex function should return a non-empty string iff the block is visibly solid.

Here is “block secret wall.lua” which is physically solid and visibly solid, but
not move body solid. This is a block that the player can move through, but
nobody can see through it or shoot through it:

CHAPTER 5. BLOCK LUA SCRIPTS PART 3 64

function p.__get_is_solid() return true end

function p.__get_is_solid_move_body() return false end

function p.__get_tex() return "concrete" end

function p.__main()

set_default_block("block_secret_wall")

end

Here is a slightly different variant of this. Here is a “block secret wall2.lua”
which is visibly solid but is neither physically or move body solid. So the player
can move and shoot through this block, but they cannot see through it:

function p.__get_is_solid() return true end

function p.__get_is_solid_physically() return false end

function p.__get_is_solid_move_body() return false end

function p.__get_tex() return "concrete" end

function p.__main()

set_default_block("block_secret_wall2")

end

Note that it does not hurt to define all of get is solid physically, get is solid move body,
and get is solid visibly.

5.5 p. get is solid visibly glass

bool __get_is_solid_visibly_glass();

It is actually not as simple as each block either being visibly solid or not.
There are three possibilities: visibly solid, visibly empty, or visibly glass. By
having only

function __p.get_is_solid_visibly() return true end

this makes the block visibly solid.
By having only

function __p.get_is_solid_visibly() return false end

this makes the block visibly empty.
However to make a block visibly glass, you need the following in the Block

Lua Script:

function p.__get_is_solid_visibly() return false end

function p.__get_is_solid_visibly_glass() return true end

When a block is visibly glass, it should have a texture that is partially trans-
parent. Specifically, each pixel in the texture should be either 100% transparent
or 100% opaque. If a block is visibly glass, this texture will be displayed in
certain circumstances.

CHAPTER 5. BLOCK LUA SCRIPTS PART 3 65

More precisely, if A and B are adjacent blocks and A is visibly empty and
B is visibly glass, then there will be a partially opaque square displayed on the
face of B that faces A. If A and B are adjacent blocks and they are BOTH
visibly glass, then no texture will be displayed on the face of each block facing
the other. If A and B are adjacent blocks and A is visibly glass but B is visibly
solid, then there will be a square displayed on the face of B that faces A.

In other world, visibly glass blocks appear in the way that normal glass
blocks appear in the Fractal Block World package Xar.

Here is the example “block glass.lua”. It is physically and move body solid,
but it is visibly glass. So the player cannot shoot or move through it, but the
player can see through the block. Also, a partially transparent texture appears
on the boundary of the glass blocks:

function p.__get_is_solid() return true end

function p.__get_is_solid_visibly() return false end

function p.__get_is_solid_visibly_glass() return true end

function p.__get_tex() return "orange_glass" end

function p.__main()

set_default_block("block_glass")

end

Here orange glass should be a texture which is partially transparent and
partially opaque.

5.6 p. get tex x pos, p. get tex x neg, etc

string __get_tex(); //Mandatory.

string __get_tex_x_pos();

string __get_tex_x_neg();

string __get_tex_y_pos();

string __get_tex_y_neg();

string __get_tex_z_pos();

string __get_tex_z_neg();

The get tex is mandatory. It specifies the texture to be used on all 6 sides
of the cube. However the texture used for each of the 6 sides can be overridden
using the functions get tex x pos, get tex x neg, etc.

For example, here is a block script “block mostly blue.lua” which is blue on
all 6 sides except for the top where it is red:

function p.__get_is_solid() return true end

function p.__get_tex() return "blue" end

function p.__get_tex_z_pos() return "red" end

function p.__main()

set_default_block("block_mostly_blue")

end

CHAPTER 5. BLOCK LUA SCRIPTS PART 3 66

5.7 p. get inv tex x pos, p. get inv tex x neg,
etc

string __get_inv_tex_x_pos();

string __get_inv_tex_x_neg();

string __get_inv_tex_y_pos();

string __get_inv_tex_y_neg();

string __get_inv_tex_z_pos();

string __get_inv_tex_z_neg();

Note: “inv” stands for inverse.
Suppose A and B are adjacent blocks and A is either visibly empty or glass

and B is visibly solid. So far, we have said in this situation we will display a
square texture on the B block that faces the A block. Which texture we use
is determined by the B block. However if the functions get inv tex x pos are
defined in Block Lua Script for A, then these can override the texture used.

For example, here is a block which is not visibly solid but if we place
it on the ceiling, it changes the ceiling texture. Call this Block Lua Script
“block ceiling paint.lua”:

function p.__get_is_solid() return false

function p.__get_is_solid_visibly() return false --Not needed.

function p.__get_tex() return "" end

function p.__get_inv_tex_z_neg() return "blue" end

function p.__main()

set_default_block("block_e") --Empty.

create_rect("block_ceiling_paint", 0,0,15, 15,15,15)

end

There is one more point: if A and B are adjacent blocks and if A is visibly
empty (or glass) and B is visibly solid such that A defines an inverse texture,
then on the face of B that faces A, should we use the texture specified by the B
block or the A block? Currently there is a simple algorithm: the “inv” texture
always takes precedence, assuming it is not the empty string.

Chapter 6

Block Lua Scripts Part 4:
Game Functions (Auxiliary
Block Functions)

6.1 Even More Block Lua Module Functions

In Fractal Block World, we have blocks which have typical block functions but
these blocks also turn into chunks themselves. In this chapter we describe
more “module” functions of Block Lua Scripts, specifically focused around the
typical block-like aspect of blocks. When these functions are called (by the
engine), they have access to the Game API, not the Chunk Generation API or
the Initialization API. We can call these the auxiliary block functions.

Here are functions that can be put into Block Lua Scripts that are described
in this chapter:

//---

// Auxiliary Block Function

//---

void __on_close(int level, BlockPos pos);

void __on_adj_block_changed(

int level, BlockPos pos, int side,

string old_bt, string new_bt);

void __change_to(

int level, BlockPos pos,

string cur_bt, string new_bt);

bool __get_can_use(int level, BlockPos pos);

string __get_use_msg(int level, BlockPos pos);

void __on_use(int level, BlockPos pos);

void __on_use2(int level, BlockPos pos);

67

CHAPTER 6. BLOCK LUA SCRIPTS PART 4 68

void __on_chunk_update(int level, BlockPos pos);

6.2 on close

void __on_close(int level, BlockPos bp);

This function of the Block Lua Script is called when the bounding box of
the player is at most 1.0 units from the block.

Note: a BlockPos is a class with 3 float members: x,y,z.
Let’s say that the player’s body is in ground mode, which means the player’s

body is a cylinder. This is what the close function might look like:

__function p.on_close(level, bp)

--Getting the (cylinder) body dimensions.

local radius = ga_get_sys_f("game.player.move.ground.radius")

local bot_to_eye = ga_get_sys_f("game.player.move.ground.bot_to_eye")

local eye_to_top = ga_get_sys_f("game.player.move.ground.eye_to_top")

--Do things with these numbers...

end

6.3 on adj block changed

void __on_adj_block_changed(

int level, BlockPos bp, int side,

string adj_old_bt,

string adj_new_bt);

Let B be the block of which this on adj block changed function is being
called. The function on adj block changed is called when a block adjacent to B
has its block type changed. Note that a block being expanded into a chunk does
not count as a block type change. However if A is a block adjacent to B and the
block type of A changes from “dirt” to “air”, then the “on adj block changed”
function will be called on the block B.

“Side” refers to the side relative to the block B. Side is an integer between
0 and 5 inclusive. 0 = x positive, 1 = x negative, 2 = y positive, etc.

“adj old bt” is the old block type string of the block adjacent to B. “adj new bt”
is the new block type string of the block adjacent to B.

6.4 change to

void __change_to(

int level, BlockPos pos,

string cur_bt, string new_bt);

CHAPTER 6. BLOCK LUA SCRIPTS PART 4 69

This is called when the type of the block changes. When it is called, the
block currently has type cur bt, but after this call the system will change the
block type to new bt.

6.5 get can use

bool __get_can_use(int level, BlockPos pos);

This returns whether or not the user can “use” the block.

6.6 get use msg

string __get_use_msg(int level, BlockPos pos);

This gets the string that is displayed when the player looks at the block. In
the current version of the engine, get can use must return true in order for
this message to be displayed.

6.7 on use

void __on_use(int level, BlockPos pos);

This is called when the user “uses” the block. Note that if you open the
console and type the command “use”, it uses the current entity you are looking
at.

6.8 on use2

void __on_use2(int level, BlockPos pos);

This is called when the player uses the “secondary” use ability of the block.
Note that if you open the console and type the command “use2”, it uses the
current entity you are looking at.

6.9 on chunk update

void __on_chunk_update(int level, BlockPos pos);

When this function exists, it is called periodically (many times per second).
More precisely, whenever a chunk with the given block type exists in the active
chunk tree, this function is passed the level and block position of the block that
is that chunk.

In a later version of the engine, we may allow blocks themselves to have
update functions, which are called even when the blocks are not subdivided
into chunks.

Chapter 7

STD Lua Chunk
Generation Helpers

In addition to the Chunk Generation Lua API, there are also built-in Lua helper
functions, found in base/WorldNodes/Helpers. These functions can be used
within any main function of a Block Lua Script.

If you are making a significantly large world, we suggest you do NOT use
any of these standard chunk generation script helper functions. Instead, define
your own. We recommend this because it would be best if your world is as self
contained as possible. However, we encourage you to use these helper functions
as inspiration. You can certainly copy them.

As we just said, because these functions may change in the future, instead
of directly using one of these functions, you should copy the script file that
contains it to your package’s WorldNodes/Helpers directory (or even better
you could copy one function at a time). For example, if you want to use
std.create_center() which is defined in std.lua, then copy

base/WorldNodes/Helpers/std.lua

to
myworld/WorldNodes/Helpers/std.lua

Better yet, copy it to

myworld/WorldNodes/Helpers/mystd.lua

then you can call mystd.create_center().

7.1 More Block Functions

7.1.1 std.create center

void std.create_center(int diameter, string type);

70

CHAPTER 7. STD LUA CHUNK GENERATION HELPERS 71

The function creates a box of blocks in the center of the chunk. Calling

std.create_center(1,"stone")

is equivalent to calling

create_rect("stone", 7,7,7, 7,7,7).

Calling
std.create_center(2,"stone")

is equivalent to calling

create_rect("stone", 7,7,7, 8,8,8).

Calling
std.create_center(3,"stone")

is equivalent to calling

create_rect("stone", 6,6,6, 8,8,8),

etc.

7.1.2 std.create tube

void std.create_tube(int diameter, string axis, string type);

This function creates a box of blocks centered along one of the three axes.
Acceptable values for axis are “x”, “y”, and “z”. For example,

std.create_tube(2, "z", "stone")

is equivalent to calling

create_rect("stone", 7,7,0, 8,8,15).

Here is a way you can create a hollow tube:

std.create_tube(4, "z", "stone")

std.create_tube(2, "z", "air")

7.1.3 std.create half tube

void std.create_half_tube(int diameter, string dir, string type);

This function is like create tube except instead of the tube going from one side
to the other, it goes from one side to the middle. Acceptable values for dir are
“x_pos”, “x_neg, “y_pos”, “y_neg”, “z_pos”, “z_neg”. For example, here is
how to create a lollipop:

create_half_tube(1, "z_neg", "white_paper")

create_center(3, "red_cherry_candy")

CHAPTER 7. STD LUA CHUNK GENERATION HELPERS 72

7.1.4 std.create edges

void std.create_edges(string type);

This function will create the 12 edges of the chunk using the specified block
type.

7.1.5 std.create shell

void std.create_shell(string type);

This function will create the outer shell of the chunk (without changing the
14x14x14 inside).

7.1.6 std.create 2x2 door

void std.create_2x2_door(

string dir,

string rim_type,

strong hole_type);

This can be use in conjunction with create_shell to make a room with doors
in it.

For example, the following code creates a door in the positive x direction:

std.create_2x2_door("x_pos", "block_s", "block_e")

It creates a hole (using the “empty” block “block e”) with a rim that is the solid
block “block s”.

Chapter 8

In Game Tools

There are several tools available to debug your world while you are in the game.

8.1 The Path Command

If you open the console (press ∼) and run the command path last it will print
to the console the name of the script for whatever chunk you are in.

If you enter the command path pos, it will print that path but also show
you the position of each chunk from its parent.

If you enter the command path this will print to the console the chunk names
of the ancestors of the chunk you are in, starting from the root of the chunk
tree all the way to the chunk you are in. That is, it will print the names of the
chunks in your current chunk path.

If you enter the command path dump this will output to “Output/path.txt”
your chunk path from the root of the chunk tree.

The format of the chunk path (on the line starting chunk_path in the file
Output/path.txt) is a list of triples of hex characters (for x,y,z) separated by
underscores (with the exception that the empty path is EMPTY_PATH).

8.2 The Script Command

If you open the console (press ∼) and run the command script it will print to
the console the Block Lua Script for whatever chunk you are in.

Remember you can use your mouse wheel or page up / page down to scroll
up and down in the console.

8.3 The Gendoc Command

If you open the console (press ∼) and run the command gendoc, the program
will generate documentation files in the directory Output/Documentation.

73

CHAPTER 8. IN GAME TOOLS 74

One notable file is

Output/Documentation/xar/xar_builtin_block_types.txt

which is a list of all the built-in (xar) block type names.
Also, the gendoc command creates the folder

Output/Documentation/ProgrammingAPI

and generates several useful files. These files list the functions you can call from
Lua, and the Lua functions which are called by the engine. The latter functions
all start with a double underscore. You might want to have some of these files
open while you read this manual.

Chapter 9

Coordinates

The layout of the world in Fractal Block World is unusual, so in this chapter we
will describe the different coordinate systems that the engine uses.

9.1 The Chunk Tree (and the Active Chunk Tree)

The world consists of chunks, each of which is a 16x16x16 region of blocks.
However every block can be subdivided into a chunk itself. So if C1 is a chunk
and B1 is one of the blocks of C1 (either solid or empty), then B1 can be
subdivided into its own chunk C2. We say that the chunk C2 is a child of
the chunk C1 (and C1 is the parent of C2). If B2 is a block of C2 and it is
subdivided into a chunk C3, then here C3 is a child of C2. We say that C3 is
a descendant of C1 (and C1 is an ancestor of C3). We say that every chunk
is a descendant of itself and an ancestor of itself. In this way, we have a tree of
chunks (the chunk tree).

The level of a chunk is which level the chunk occurs in the chunk tree. So
the root chunk of the world is in level 0 (and the root chunk is the ONLY chunk
in level 0). Then there are 16x16x16 chunks in level 1. These are the children
of the root chunk. Then there are 256x256x256 chunks in level 2, etc.

At any point in time the game can only interact with a few thousand chunks.
These chunks form what we call the active chunk tree. When a chunk is
added to the active chunk tree, we first procedurally generate the chunk from
scratch and we then load any modifications to the chunk that have been saved
previously. Later, we may remove a chunk from the active chunk tree.

9.2 Viewer Centric Position

The viewer (the eye of the player) is always in a chunk in the active chunk tree.
In a sense, a chunk which contains the viewer position is the center of the world.
The viewer is always “on a certain level” which we call the viewer level. The
chunk of the viewer is the chunk which contains the viewer which is on the

75

CHAPTER 9. COORDINATES 76

viewer’s level. A chunk is a center chunk iff it is the (unique) chunk of a level
which contains the viewer position. In other words, a chunk is a center chunk
iff it is an ancestor of the chunk of the viewer.

Within a level, the center chunk is said to have “viewer centric position”
(0, 0, 0). The chunk of that same level that is 1 chunk to the right (right is the
positive x direction) is (1, 0, 0), etc. We call the viewer centric position the vcp
of the chunk for short.

So the viewer’s chunk has vcp (0, 0, 0). The parent of the viewer’s chunk
also has vcp (0, 0, 0), etc.

When the viewer moves from one chunk to an adjacent one, this will change
the vcp’s of the chunks on his level L. However the vcp’s of chunks on level
L− 1 may or may not change, etc. The movement of the player is like walking
on a treadmill: when the player moves from chunk to chunk, he keeps looping
back and the world is the thing that actually moves.

9.3 Ways to describe the position of a chunk

There are three main ways to describe the position of a chunk :

� The path of the chunk.

� The level of the chunk together with the chunk’s vcp (viewer centric posi-
tion).

� The chunk id of the chunk.

9.4 Ways to describe the position of a block

There are four main ways to describe the position of a block. If the block is
itself subdivided into a chunk, we can refer to it using the three methods above.
However we can also refer to the block’s position using the level of the block
and the (x, y, z) “block position” of the block. Note that by the level of a block,
we always mean the level of the chunk which contains the block.

9.4.1 chunk path

The path of the chunk is the path of the chunk from the root of the chunk
tree. This is described as a string of triples of hex characters, separated by
underscores. For example

“7a3_221”

is the path of a chunk C2 on level 2 which we can reach as follows: start at the
root C0 and go to block (7, 10, 3) of that chunk. That block is the same as lets
say chunk C1. Then in C1 we go to the block (2, 2, 1). That block is the chunk
for C2.

The root has chunk path “EMPTY_PATH”.

CHAPTER 9. COORDINATES 77

The main advantages of using the chunk path to refer to a chunk are 1) these
paths do not change when the player moves or restarts the program and 2) the
path of a chunk is valid even if the chunk is not in the active chunk tree.

The main disadvantage of using the chunk path to refer to a chunk is that
this is slower than the other methods (when the chunk is very deep in the tree).

9.4.2 level + vcp

We can also refer to the position of a chunk using the level it is on (which is an
integer) and its vcp (viewer centric position).

An advantage of this method is that the level + vcp combination only uses
4 integers. Another advantage is the level + vcp combination makes it easy to
talk about the positions of vectors in a level. We discuss this later with “level
positions”.

The main disadvantage of this method is that vcp’s will likely change when-
ever the viewer moves from one chunk to another.

9.4.3 chunk id

Every chunk in the active chunk tree has a chunk id (which is an integer). The
system that maintains the active chunk tree has a counter N which starts at
zero. Every time a chunk is added to the active chunk tree, is gets assigned the
chunk id N and then N gets incremented.

Every time the user loads a game, this system is rebooted and so it goes
back to zero. For this reason, chunk ids cannot be used for long term storage.

9.5 Level and local positions (for vectors)

Consider an entity, like a bullet or a rocket. This entity exists on some level L.
We want to represent its position as a vector (x,y,z). There are two ways to do
this: with a local position or with a level position.

9.5.1 Local positions

Every chunk has its own coordinate system. The origin of this coordinate system
is in the left back bottom position of the chunk. So if (x,y,z) is a point in the
chunk then each of x,y,z is between 0.0 and 16.0 inclusive.

Given a point in a chunk, we call the point’s position relative to the chunk’s
coordinate system the local position of the point. For example, if a bullet is
at the center of chunk C, then the bullet has the local position (8.0, 8.0, 8.0).

9.5.2 Level positions (LP)

Consider a point on level L. The level position (LP) of the point is the position
of the point relative to the center chunk of level L.

CHAPTER 9. COORDINATES 78

For example, if a point is in the center chunk of a level, then its local position
is the same as its level position.

In a sense a point in space exists in more than one level. So for example we
can convert a point’s level position for level 13 into its level position for level
12, etc.

Note that when the player moves from one chunk to another, this will likely
change an entity’s level position.

9.6 Block Positions (BP) and Local Block Posi-
tions (LBP)

Block Positions are to Level Positions as Local Block Positions are to Local
Positions.

9.6.1 Local Block Positions (LBP)

A chunk contains 16x16x16 blocks (either solid or empty). The positions of
these blocks within the chunk are called the local block positions (LBPs) of
the blocks. The left back bottom block in a chunk has the lbp (0,0,0). The
right front top block in a chunk as the lbp (15,15,15). So an lbp for a block in
a chunk is a triple (x,y,z) of integers such that each x,y,z is between 0 and 15
inclusive.

Actually each of x,y,z is a signed 8 bit integer (signed char). This allows
representing the positions of blocks that are slightly outside the current chunk.
This is sometimes useful. However you should not compute the hashcodes of
local block positions outside the chunk.

A local block position can be represented by a single 4 byte integer, which we
call a local block position hashcode. See the Lua script base/Game/std.lua
which has the functions lbph to lbp and lbp to lbph to convert back and forth
between an lbp and an lbph. This is how lbp to lbph is defined for example:

function p.lbp_to_lbph(lbp)

return lbp.z + (16 * lbp.y) + (256 * lbp.x);

end

You can create an lbp using the function std.bp. This is code to convert an
lbp into an lbp hash and then back again:

local lbp = std.bp(3,4,5)

local lbph = std.lbp_to_lbph(lbp)

local lbp2 = std.lbph_to_lbp(lbph)

--Now lbp should equal lbp2.

CHAPTER 9. COORDINATES 79

9.6.2 Block Positions (BP)

Every block is in some level. If a chunk C is in level L, then the blocks of C we
also say are in level L (but when we subdivide each such block, the chunk the
block becomes is in level L+ 1).

The block position (BP) of a block is the position of the block relative to
the center chunk of whatever level the block is in. A block position is a triple
(x,y,z) of integers.

If a block is in the center chunk of a level, then the block’s block position is
the same as its local local block position.

Consider the block B1 with block position (15,3,4) of the center chunk of a
level. The block B2 one to the right of this has block position (16,3,4). This
is not located in the center chunk C1, but instead it is the the chunk C2 one
to the right of the center chunk. The block B2 has local block position (0,3,4)
inside the chunk C2.

Chapter 10

Environment Rect Lua
Scripts

An Environment Rect can be added in the __main function of a Block Script by
calling the function add_env_rect. Recall that this function has the following
syntax:

void add_env_rect(

int min_x, int min_y, int min_z,

int max_x, int max_y, int max_z, string type);

An Environment Rect is an invisible box. To make a 3x3x3 “death” type
env rect that starts at (1,2,3) and goes to (3,4,5) inclusive, you would put

add_env_rect(1,2,3, 4,5,6, "death")

in the chunk’s Block Lua Script __main function. An env rect is entirely con-
tained in a single chunk. So when a chunk generation script calls add_env_rect
to create an env rect, then min_x, min_y, min_z, max_x, max_y, max_z, must
all be from 0 to 15 inclusive.

Environment Rect Lua Scripts are put in the folder EnvRects (in your pack-
age’s top folder).

10.1 Environment Rect Lua Script Module Func-
tions

Here are all the module functions of Environment Rect Lua Scripts. There is
only one:

void __on_touch();

80

CHAPTER 10. ENVIRONMENT RECT LUA SCRIPTS 81

10.1.1 p. on touch

The __on_touch function of an env rect lua script is called when then player’s
bounding box intersects the env rect box. The base package has the ”death”
env rect script. That is, there is the script file base/EnvRects/death.lua and
it reads as follows:

function p.__on_touch()

damage_player(true, 10000)

end

Let’s say that damage_player is a function we have defined elsewhere which
deals damage to the player.

The game is updated many times per second, so if the player is touching
an env rect, then the __on_touch function of the env rect will be called many
times. So if you want an env rect with is a jump pad, then you may want to
use a global variable (using ga_get_f and ga_set_f) to record the last time a
jump pad was used. This way you can impose a rule that a jump pad cannot
be used twice in a 0.1 second time interval for example.

10.2 Disclaimer

Environment Rect Lua Scripts are only used for basic purposes so far. At some
point we might make changes to how these scripts work. For example, the
__on_touch function might take an integer id as an argument and this could
be used to query information about the env rect via the Game Lua-To-C API.
Perhaps in this way the __on_touch function can get access to the parameters
min_x, min_y, min_z, max_x, max_y, max_z.

Chapter 11

Basic Entity Lua Scripts

A basic entity (BEnt) occupies a block position and does not move. It is only
rendered if you are on the same level as the entity. A basic entity is very
lightweight. Gold in the xar package is an example of a basic entity.

Eventually we plan to make it so that everything you can do with a BEnt
you can do with a more advanced type of entity: a moving entity (MEnt).

Basic Entity Lua Scripts are put in the folder BasicEnts (in your package’s
top folder).

11.1 Initialization BEnt Script Functions

Here are all the functions that Basic Entity Lua Scripts can define that are called
by the engine in the initialization Lua state. Indeed, they are all called while
the package is being initialized. They must start with a double underscore.

//---

// Called During (Type) Initialization

//---

string __get_mesh();

string __get_mesh2();

bool __get_pulsates();

float __get_scale();

float __get_touch_dist();

11.2 Game BEnt Script Functions

Here are all the functions that Basic Entity Lua Scripts can define that are
called by the engine in the game Lua state. They must start with a double
underscore.

//---

82

CHAPTER 11. BASIC ENTITY LUA SCRIPTS 83

// Called During Main Game

//---

void __on_touch(int level, BlockPos bp);

bool __get_can_use(int level, BlockPos bp);

string __get_use_msg(int level, BlockPos bp);

void __on_use(int level, BlockPos bp);

void __on_use2(int level, BlockPos bp);

void __on_render(int level, BlockPos bp);

11.3 Initialization Functions

These functions are called when the package is loaded. They are called one time
for each Basic Entity Lua Script (not one time for each Basic Entity itself in
the world). For example, if there is the script BasicEnts/cheese.lua, then the
function p.get_mesh of cheese.lua will be called only once when the package
is loaded to determine the mesh of basic entities of type cheese.

11.3.1 p. get mesh

string __get_mesh();

This function is called by the game to determine the mesh of the basic entity.
If the following is in the basic entity’s Lua script grenade_box.lua, then the
mesh small_box will be used for the mesh of the basic entity:

function p.__get_mesh() return "small_box" end

Here small_box must be a mesh name that is listed in the file

Meshes/mesh_names.txt.

If the function p.get_mesh is not defined in the basic entity Lua script, then
the mesh name that is used is the name of the basic entity lua script itself. In
our example, the mesh name grenade_box would be used if p.__get_mesh was
not defined.

11.3.2 p. get mesh2

string __get_mesh2();

A basic entity actually uses two meshes for rendering, the second being
optional. Both meshes are rendered centered in the block that the basic entity
is in. Use p.__get_mesh2 to specify the second mesh name. If p.__get_mesh2
is not defined in the basic entity Lua script, then only the first mesh will be
used (specified by p.__get_mesh).

CHAPTER 11. BASIC ENTITY LUA SCRIPTS 84

11.3.3 p. get pulsates

bool __get_pulsates();

This specifies whether or not the basic entity “pulsates”. If it pulsates, then
its size changes sinusoidally over time. This is only used for rendering purposes.
If this function is not defined, then the basic entity will pulsate by default.

11.3.4 p. get scale

float __get_scale();

This allows you to change the size of a basic entity (for rendering purposes
only) without having to change the entity’s mesh. If p.__get_scale is not
defined, then the scale number will be 1.0. Suppose the basic entity Lua script
grenade_box.lua includes the following:

function p.__get_mesh() return "small_box" end

function p.__get_scale() return 2.0 end

Then a small_box mesh will be used for rendering the basic entity, but it
will be scaled by a factor of 2.

11.3.5 p. get touch dist

float __get_touch_dist();

Let R be the touch distance of a basic entity. When the player’s eye is within
distance R from the center of the basic entity, then the basic entity’s on_touch
function will be called. The p.__get_touch_dist function specifies this dis-
tance. For example, suppose the basic entity Lua script grenade_box.lua in-
cludes the following:

function p.__get_touch_dist() return 3.0 end

Then when the player is within 3.0 units of the grenade box, then the
on touch function of the grenade box will called. Note that the width of a
block is 1.

11.4 Game Functions

These functions are called during normal game execution. The engine calls these
functions during various times, and it passes to these functions the chunk id of
the chunk containing the entity along with the local block position of the entity
in that chunk. The local block position is passed as a local block position hash
code, which is an integer which codes the lbp. See Section 9.6.1 for how to
use the functions std.lbph_to_lbp and std.lbp_to_lbph to convert back and
forth between local block positions and local block position hash codes.

CHAPTER 11. BASIC ENTITY LUA SCRIPTS 85

11.4.1 p. on touch

void __on_touch(int level, BlockPos bp);

Let R be the touch distance of the basic entity (see the function get_touch_dist).
When the player’s eye is within R units of the center of the basic entity, the
basic entity’s __on_touch function will be called.

So suppose the basic entity Lua script grenade_box.lua includes the fol-
lowing:

function p.__on_touch(level, bp)

local num_grenades_old = ga_get_i("num_grenades")

local num_grenades_new = num_grenades_old + 10

ga_set_i("num_grenades", num_grenades_new)

end

When the player is sufficiently close to the grenade box, then the on_touch
function of the grenade box will be called and this will give the player 10
grenades.

11.4.2 p. get can use

bool __get_can_use(int level, BlockPos bp);

The player is able to “use” certain entities. When the player is relatively
close to a basic entity, is looking at the entity, and the player presses their “use
key”, then the game asks the entity if it can be used (via this __get_can_use
function).

Here is part of a basic entity Lua script which makes it so the entity can
only be used if the player is at most 2.0 units from the basic entity:

function p.__get_can_use(level, bp)

local dist = ga_block_dist_to_viewer(level, bp)

return (dist < 2.0)

end

11.4.3 p. get use msg

string __get_use_msg(int level, BlockPos bp);

When the player looks at a basic entity (and is close enough), a text message
is displayed at the center of the screen. The function __get_use_msg determines
this message. If this function returns the empty string, then no text will be
displayed. Here is code for the grenade_box.lua lua script that displays the
text “10 grenades”. The text will be in green if the player can use the box to get
more grenades, and it will be in red if the player already has the max number
of grenades in their inventory.

CHAPTER 11. BASIC ENTITY LUA SCRIPTS 86

function p.__get_use_msg(level, bp)

local max_grenades = 100

local player_grenades = ga_get_i("num_grenades")

local color_str = ""

if(player_grenades < max_grenades) then

color_str = "^x00ff00" --Green.

else

color_str = "^xff0000" --Red.

end

return color_str + " 10 grenades"

end

11.4.4 p. on use

void __on_use(int level, BlockPos bp);

If the p. get can use function returns true and the player uses the basic
entity, then the on use function is called.

function p.__on_use(level, bp)

local num_grenades_old = ga_get_i("num_grenades")

local num_grenades_new = num_grenades_old + 10

ga_set_i("num_grenades", num_grenades_new)

end

11.4.5 p. on use2

void __on_use2(int level, BlockPos bp);

This is just like on use, except it is called when the player uses the sec-
ondary use function of the entity.

We recommend being careful about having too many entities with secondary
use functions, because it is can be a bit much for the player to keep track of.

11.4.6 p. on render

void __on_render(int level, BlockPos bp);

If this function exists, then this function is used for rendering instead of the
one that is hardcoded into the engine. See the functions in the Game API that
start with ga_render_.

At least for now, for backwards compatability you can also have the function
be called __render instead of __on_render.

CHAPTER 11. BASIC ENTITY LUA SCRIPTS 87

11.5 An example

Here is the full code for a grenade box.lua basic entity Lua script. The player
can pick up the grenade box by either 1) touching it, 2) using it, or 3) using
telekinesis.

function p.__get_mesh() return "small_box" end

function p.__get_mesh2() return "" end --Not needed.

function p.__get_pulsates() return true end --Not needed.

function p.__get_scale() return 1.0 end --Not needed.

function p.__get_touch_dist() return 1.5 end

--This function actually gives the player grenades.

function p.payload()

local max_grenades = 100

local num_grenades_old = ga_get_i("num_grenades")

local num_grenades_new = num_grenades_old + 10

if(num_grenades_new > max_grenades) then

num_grenades_new = max_grenades

end

ga_set_i("num_grenades", num_grenades_new)

--Removing the entity for one hour.

ga_bent_remove_temp(level, bp, 60*60)

end

function p.__get_can_use(level, bp)

local max_grenades = 100

local player_grenades = ga_get_i("num_grenades")

if(player_grenades >= max_grenades) then return false end

local dist = ga_lbp_dist_to_viewer(chunk_id, lbp_hash)

if (dist > 5.0) then return false end

return true

end

function p.__get_use_msg(level, bp)

local can_use = p.get_can_use(chunk_id, lbp_hash)

if can_use then

color_str = "^x00ff00" --Green.

else

color_str = "^xff0000" --Red.

end

return color_str .. " 10 grenades"

end

CHAPTER 11. BASIC ENTITY LUA SCRIPTS 88

function p.__on_use(int chunk_id, int lbp_hash)

p.payload(chunk_id, lbp_hash)

end

function p.__on_touch(int chunk_id, lbp_hash)

p.payload(chunk_id, lbp_hash)

end

Chapter 12

Moving Entity Lua Scripts

A moving entity (MEnt) exists within a chunk, but it can move from one chunk
to another. Every moving entity is said to be “in” a unique chunk.

Moving Entity Lua Scripts are put in the folder MovingEnts (in your pack-
age’s top folder).

12.1 Roaming vs Non-Roaming Moving Entities

Moving entities are put into major categories: roaming and non-roaming. Roam-
ing moving entities are ments that are created during game play by the usual
game system. Non-roaming moving entities, on the other hand, are the same
thing as moving entities that were originally created from procedural world
generation.

A roaming ment only exists for a certain amount of time, and then it van-
ishes completely (leaving nothing behind). A non-roaming ment (a ment from
procedural world generation) can be modified and these modifications are stored
(for a certain amount of time).

Consider a troll monster ment that comes from procedural world generation
(so it is non-roaming). If the player kills the troll, then it will remain removed
from the world for a certain amount of time. However the troll will respawn
after a certain amount of time. So if the player kills the troll, walks away for a
minute, and then comes back, the troll will still be gone. However if the player
kills the troll, walks away for many hours, and then comes back, then the troll
will have respawned.

12.2 Type IDs, Instance IDs, and Code IDs

Every moving entity type has an id (its “type id”). Every instance of a moving
entity has an instance id (its “inst id”). However these only refer to moving
entities that exist in the active chunk tree. When we save the game, we do not
save the instance ids of moving entities. Instead we save their “code ids”.

89

CHAPTER 12. MOVING ENTITY LUA SCRIPTS 90

When a moving entity is procedurally generated (when a chunk is procedu-
rally generated), it is assigned as pseudo random code id. If the chunk is created
a second time it will be assigned the same code id. That is, this explains how
non-roaming moving entities get their code ids. On the other hand, when a
roaming moving entity is created, it is assigned a truly random code id. Roam-
ing moving entities have positive code ids whereas non-roaming moving entities
have negative code ids.

12.3 Initialization MEnt Script Functions

Here are all the functions that Moving Entity Lua Scripts can define that are
called by the engine in the initialization Lua state. Indeed, they are all called
while the package is being initialized. They must start with a double underscore.

//---

// Called During (Type) Initialization

//---

void __type_init(int type_id);

12.4 Game MEnt Script Functions

Here are all the functions that Moving Entity Lua Scripts can define that are
called by the engine in the game Lua state. They must start with a double
underscore.

//---

// Called During Main Game

//---

void __on_add_to_live_world(

int inst_id);

void __on_update(

int inst_id, float elapsed_time, float elapsed_level_time);

void __on_alarm(

int inst_id, string alarm_name);

void __on_die(

int inst_id);

void __on_too_fine(

int inst_id, int fine_chunk_id, Vector fine_offset);

bool __on_block_hit(

int inst_id, int level,

BlockPos bp, Vector lp,

int normal_side, Vector normal);

bool __on_block_hit_nonfertile(

int inst_id, int level,

BlockPos bp, Vector lp,

CHAPTER 12. MOVING ENTITY LUA SCRIPTS 91

int normal_side, Vector normal);

bool __on_ment_hit(

int hitter_inst_id, int hittie_inst_id,

int level, Vector lp,

Vector normal);

void __on_level_travel(

int inst_id, int level,

Vector lp_start, Vector lp_end);

void __on_closest(

int inst_id,

float dist_to_viewer,

Vector dir_to_viewer);

bool __get_can_use(

int inst_id);

string __get_use_msg(

int inst_id);

void __on_use(

int inst_id);

void __on_use2(

int inst_id);

void __on_render(

int inst_id,

float radius);

12.4.1 type init

void __type_init(int type_id);

The __type_init function of each moving entity is called exactly once while
the package is being loaded (not during main game play). Only the Initialization
Lua API is available when this __type_init is called (there is a chapter devoted
to that API in this manual). The __type_init function is passed an integer
number which identifies the moving entity type. Here is what the __type_init
function might look like for a troll monster moving entity:

function p.__type_init(tid)

ia_ment_new_static_var_i(tid, "max_health", 200)

ia_ment_new_var_i(tid, "health", 200, 60.0 * 60.0)

ia_ment_set_builtin_var_f(tid, "__radius", 2.5);

end

Here ia_ment_new_static_var is a function that is part of the Initialization
Lua API. The call to that function creates a new variable called “max health”
that is associated to the moving entity type.

The call to the function ia_ment_new_var_i creates a new variable “health”
associated to every instance of the moving entity.

CHAPTER 12. MOVING ENTITY LUA SCRIPTS 92

Moving entities also have built-in variables that always exist. The call to the
function ia_ment_set_builtin_var_f changes the built-in variable __radius

to “2.5”. Later in this chapter we list all the built-in variables and explain what
they do.

12.4.2 on add to live world

void __on_add_to_live_world(int inst_id);

When a moving entity is added to the active chunk tree, this function is
called. There is one other time this function is called. Every chunk in the active
chunk tree is either active or passive. A passive chunk is basically asleep: it
does not get updated. When a passive chunk is changed to become active, the
__on_add_to_live_world of each moving entity in the chunk is called.

Something you might want to put into the __on_add_to_live_world func-
tion are calls to set “alarms”.

12.4.3 on update

void __on_update(

int inst_id, float elapsed_time, float elapsed_level_time);

The game updates the world about 25 times per second. We call these
“discrete updates”. If a chunk (in the active chunk tree) is active, then during
each discrete update the chunk gets updated. When a chunk is updated, the
__on_update function of every moving entity in the chunk is called.

The elapsed_time is how much time has passed since the last discrete up-
date. Every level (level of the chunk tree) has its own time system. Time on
coarser levels passes slower. The elapsed_level_time is how much time has
elapsed on the level that the moving entity is in.

12.4.4 on alarm

void __on_alarm(

int inst_id, string alarm_name);

The engine maintains a collection of “alarms”. A moving entity alarm is a
triple (inst_id, alarm_name, time) where inst id is the instance id of a moving
entity, alarm_name is a string, and time is a time (either in game time or in
a level’s time). The time is when the alarm should “go off”. When a moving
entity type alarm goes off, the engine calls back the function p.__on_alarm of
the moving entity with instance id inst_id.

Here is example code for the __on_alarm function. It deals 10 damage to
the moving entity and then sets another alarm.

function p.__on_alarm(inst_id, alarm_name)

if(alarm_name == "poison") then

CHAPTER 12. MOVING ENTITY LUA SCRIPTS 93

local health = ga_ment_get_i(inst_id, "health")

health = health - 10

ga_ment_set_i(inst_id, "health", health)

local cur_time = ga_get_game_time()

local next_time = cur_time + 1.0 --One second in the future.

ga_ment_set_alarm(inst_id, next_time, "poison")

end

end

The ga_ment_set_alarm function is described in the chapter about the
Game Lua-to-C API. Note that there is also the function ga_ment_set_alarm_level,
which sets an alarm that goes off at a given level time (as opposed to a game
time).

12.4.5 on die

void __on_die(int inst_id);

If the moving entity has a variable called health, then when this variable is
first ≤ 0 during a discrete update, then the __on_die function will be called.

This is an example of what the function might look like:

function p.__on_die(inst_id)

--Dropping some gold.

local level = ga_ment_get_i(inst_id, "__level")

local lp = ga_ment_get_lp(inst_id) --The position (level position).

local bp = std.lp_to_bp(lp)

local exist_length = 5*60 --Will exist for 5 minutes.

ga_bent_add(level, bp, "gold_10", exist_length)

end

The __on_die function may be removed in future versions of the game.

12.4.6 on too fine

void __on_too_fine(

int inst_id, int fine_chunk_id, Vector fine_offset);

Every moving entity has a max and a min level that it can exist on. The
max level L is the finest level on which the entity can exist. If we attempt to
move the entity to an even finer level (level L+1, then the on too fine function
is called. This function is passed the offset of the moving entity in the fine chunk
on level L+ 1 (as well as the chunk id of that chunk).

12.4.7 on block hit

bool __on_block_hit(

CHAPTER 12. MOVING ENTITY LUA SCRIPTS 94

int inst_id, int level,

BlockPos bp, Vector lp,

int normal_side, Vector normal);

This is called when the moving entity hits a block.
The function should return true iff the hit is “terminal”, meaning the moving

entity should not move any farther. Also, if the block hit is terminal, the moving
entity will be removed afterwards. However right now the engine ignores the
return value of __on_block_hit and pretends that the function returns true. So
all block hits are terminal. In the future we may make the engine more general,
where there can be non-terminal block hits.

The arguments level and bp describe the position of the block that is being
hit. Recall that bp has the three integer members x,y,z. The vector lp describes
the position of the hit. It is the “level position” (the position of the hit in
the given level). The Vector normal is a length one vector that is normal to
the surface of intersection. That is, the normal vectors points out from the
intersection point away from the surface. The normal_side integer describes
the side of the block that was hit. Recall that 0 = x pos, 1 = x neg, 2 = y pos,
3 = y neg, 4 = z pos, 5 = z neg.

Here is the code for a moving entity which is a projectile that when it hits a
block, it creates a stone block adjacent to the block of impact. The stone block
will exist for 60 seconds.

function p.__on_block_hit(

inst_id,

level, bp, lp,

normal_side, normal)

--

--Getting the adjacent block position.

local adj_bp = std.get_adj_bp(bp, normal_side)

--Adding a stone block that will

--exist for 60 seconds.

ga_block_change_rl(level, adj_bp, "stone", 60.0)

return true --Terminal hit.

end

12.4.8 on block hit nonfertile

bool __on_block_hit_nonfertile(

int inst_id, int level,

BlockPos bp, Vector lp,

int normal_side, Vector normal);

This is just like __on_block_hit, except it is called when the ment hits a
block that is outside the fertile radius. That is, the ment hits a block in a chunk

CHAPTER 12. MOVING ENTITY LUA SCRIPTS 95

in which only blocks have been loaded.

12.4.9 on ment hit

bool __on_ment_hit(

int hitter_inst_id, int hittie_inst_id,

int level, Vector lp,

Vector normal);

This is called when the moving entity (the hitter) hits another moving entity
(the hittie).

The function should return true iff the hit is “terminal”, meaning the moving
entity should not move any farther. Also, if the block hit is terminal, the moving
entity will be removed afterwards.

The arguments level and lp describe the position of the block that is being
hit. The vector lp describes the position of the hit. It is the “level position”
(the position of the hit in the given level).

The Vector normal is a length one vector that is normal to the surface of
intersection. This could be used for blood spurting, say if the hitter is a bullet
and the hittie is a monster.

The Lua function on ment hit can optionally call

ga_return_b("remove", false)

before the function returns to make it so the ment is not removed by the engine
(even if __on_ment_hit function returns true).

Here is code for a bullet moving entity. If the hittie has a health variable, it
will deal 10 damage to the hittie.

bool function p.__on_ment_hit(

hitter_inst_id, hittie_inst_id,

level, lp, normal)

--

local hittie_type = ga_ment_get_type(hittie_inst_id)

if ga_ment_var_exists(hittie_type, "health") then

local health = ga_ment_get_i(hittie_inst_id, "health")

health = health - 10

ga_ment_set_i(hittie_inst_id, "health", health)

end

--It is NOT a terminal hit:

--the bullet can pass through this monster and

--go on to hit other monsters.

return false

CHAPTER 12. MOVING ENTITY LUA SCRIPTS 96

12.4.10 on level travel

void __on_level_travel(

int inst_id, int level,

Vector lp_start, Vector lp_end);

This function is called when a moving entity moves from one point (lp_start)
to another (lp_end), all when the particle is on a certain level.

Here is code for a bullet which leaves a trail of smoke. The key is the function
ga_particle_trail, which creates a trail of particles.

void __on_level_travel(

int inst_id, int level,

Vector lp_start, Vector lp_end)

--

local args = {}

args.level = level

args.pos_start = lp_start

args.pos_end = lp_end

args.ttl_min = 0.5

args.ttl_max = 0.5

args.size_min = 0.1

args.size_max = 0.1

args.color = std.vec(1.0, 1.0, 1.0)

args.fade_time_min = 0.5

args.fade_time_max = 0.5

args.speed_min = 0.0

args.speed_max = 0.0

args.tex = "particle_2"

args.radius_min = 0.0

args.radius_max = 0.0

args.avg_len = 1.0

args.use_min_dist = false

ga_particle_trail(args)

end

12.4.11 on closest

void __on_closest(

int inst_id,

float dist_to_viewer,

Vector dir_to_viewer);

If this function exists in the moving entity script, then the following will
happen: every discrete update the engine will calculate the distance from the
moving entity to the viewer (the player). As long as this distance goes down,
nothing will happen. However once this distance increases, the moving entity’s
__on_closest function will be called.

CHAPTER 12. MOVING ENTITY LUA SCRIPTS 97

This can be used, for example, to have a rocket explode when it is at its
closest point to the player.

For convenience, this function is passed both the distance to the player and
also a length one Vector which points from the moving entity to the viewer.

12.4.12 get can use

bool __get_can_use(

int inst_id);

Moving entities, just like basic entities, can be “used”. This function deter-
mines whether or not the moving entity can be used. If this function is missing,
then the entity cannot be used.

function p.__get_can_use(inst_id)

--Getting the global variable for player health.

local player_health = ga_get_i("health")

if(player_health < 100) then

return true --Can use the entity.

else

return false --Cannot use the entity.

end

end

12.4.13 get use msg

string __get_use_msg(

int inst_id);

When the player looks at a moving entity, the string that is returned from
this function is displayed in the center of the screen. This happens even if
the __get_can_use function returns false. When the __get_use_msg returns
the empty string, no message is displayed when the player looks at the moving
entity. If the __get_use_msg, then that is equivalent to the function existing
and always returning the empty string.

Continuing the example from the subsection about __get_can_use, here is
code for a “healing shrine” which heals the player if their health is below 100:

function p.__get_use_str(inst_id)

local can_use = p.__get_can_use(inst_id)

if(can_use) then

return "Use this to get 100 health"

else

return "You already have full health"

end

end

CHAPTER 12. MOVING ENTITY LUA SCRIPTS 98

12.4.14 on use

void __on_use(int inst_id);

When the player attempts to “use” a moving entity, first the __get_can_use
function of the entity is called. If that function returns true, then this __on_use
function is called.

Continuing our example from the last two subsections, here is code for a
“healing shrine”:

function p.__on_use(inst_id)

--get_can_use must have returned true.

--Setting the player health to 100.

ga_set_i("health", 100)

end

12.4.15 on use2

void __on_use2(int inst_id);

This is just like __on_use, but it is called for the secondary use function of
the moving entity.

12.4.16 on render

void __on_render(int inst_id, float radius);

If this function exists, then this function is used for rendering instead of the
one that is hardcoded into the engine. See the functions in the Game API that
start with ga_render_.

At least for now, for backwards compatability you can also have the function
be called __render instead of __on_render.

12.5 Moving Entity Vars Overview

Every moving entity type has a list of variables associated to it. Each variable
has a type, being either “bool”, “int”, “float”, “vector”, and “string”. This list
of variables must be specified during the package initialization phase. That is,
no new moving entity variables can be added during normal game play.

Each variable has a default value (associated to the moving entity type).
A moving entity (instance) only stores a variable if that variable has a value
different from its default value (we use a sparse system for storing variables).

CHAPTER 12. MOVING ENTITY LUA SCRIPTS 99

12.5.1 Static variables

Some of these variable values are only associated to the “type” of moving entity
itself. These are called static variables. We can think of a static variable as a
normal variable but it only has a default value.

On the other hand, non-static variable values are associated to each moving
entity instance. These values can be different from their default value.

The value of a static variable for a moving entity can only be set during the
package’s initialization phase. Similarly, the default value of non-static variables
for a moving entity can also only be set during the package’s initialization phase.

12.5.2 Revert lengths

Every non-static variable has a revert length (rl). Once a non-static variable
is changed, then (assuming it is not changed again) after the revert length many
seconds have passed, the variable will be reset to its default value.

Note that when a variable is reverted, this only finally takes place when the
player leaves the chunk of the moving entity so that the chunk is removed from
the active chunk tree.

12.5.3 Built-in variables

Some moving entity variables are automatically created by the engine. All these
variables start with double underscores. Take the built-in variable __mesh for
example. This is created by the engine, but the user can modify this during
initialization by calling

ia_ment_set_builtin_var_i(tid, "__mesh", "sphere_100_poly");

This modifies the built-in variable.
It is currently impossible to modify the revert length of a built-in variable,

but this may change in later versions of the game.
Both static and non-static built-in variables can be changed like this. How-

ever some built-in variables are read-only. A read-only variable should not be
modified. The engine may modify read-only variables, but you may not.

If a built-in read-only variable is modified, this will result in undefined behav-
ior (although in future versions of the game we may simply make the program
exit if any read-only variables are illegally modified).

12.6 List of all moving entity built-in vars

Here is a list of all the built-in variables for moving entities. We also list the
default value of each variable and also the revert length (rl).

The largest revert length we use is one hundred thousand hours. We do not
recommend using anything larger than that. Some of the variables are static.

CHAPTER 12. MOVING ENTITY LUA SCRIPTS 100

To avoid an overload of information, we will list the revert lengths
here but not when we talk about the variables later.

static bool __disable_saving = false

READ_ONLY bool __from_world_gen = false (rl = 100K hours)

READ_ONLY bool __grounded

READ_ONLY Vector __grounded_offset

READ_ONLY Vector __grounded_offset_old

static float __ttl = -1.0

static float __ttl_grounded = 60*60 (1 hour)

float __game_end_time = -1.0 (rl = 100K hours)

float __respawn_length = 60*60 (1 hour) (rl = 100K hours)

READ_ONLY float __add_to_live_world_time = -1.0 (rl = 5 minutes)

static int __extra_min_levels = 0

static int __extra_max_levels = 0

READ_ONLY int __start_level = -1 (rl = 1 minute)

READ_ONLY int __min_level = -1 (rl = 1 minute)

READ_ONLY int __max_level = -1 (rl = 1 minute)

READ_ONLY int __level = -1 (rl = 1 minute)

READ_ONLY int __chunk_id = -1 (rl = 1 minute)

READ_ONLY Vector __offset = Vector(7.5,7.5,7.5) (rl = 100K hours)

READ_ONLY Vector __offset_old = Vector(7.5,7.5,7.5) (rl = 100K hours)

Vector __vel = Vector(0,0,0) (rl = 100K hours)

bool __vel_disabled = false (rl = 100K hours)

string __mesh = "" (rl = 1 hour)

float __alpha = 1.0 (rl = 1 hour)

string __tex_override = "" (rl = 1 hour)

float __min_render_dist = -1.0 (rl = 1 minute)

float __max_render_dist = -1.0 (rl = 1 minute)

float __max_screen_size = -1.0 (rl = 1 minute)

float __max_screen_size_time_len = -1.0 (rl = 1 minute)

int __team_id_source = 0 (rl = 1 minute)

int __team_id_target = 0 (rl = 1 minute)

bool __collides = true (rl = 1 minute)

CHAPTER 12. MOVING ENTITY LUA SCRIPTS 101

bool __solid_wrt_player = false (rl = 1 minute)

bool __point_block_correct = false (rl = 1 minute)

bool __ment_correct = false (rl = 1 minute)

float __radius = 1.0 (rl = 1 minute)

bool __radius_lvlinv = false (rl = 1 minute)

bool __homing = false (rl = 1 minute)

float __homing_speed = 1.0 (rl = 1 minute)

float __homing_min_dist = 0.0 (rl = 1 minute)

READ_ONLY int __homing_target = -1 (rl = 1 minute)

bool __homing_player_pathing = false (rl = 1 minute)

bool __homing_player_vis_test = false (rl = 1 minute)

bool __homing_only_diff_level = false (rl = 1 minute)

float __gas_cloud_period = -1.0 (rl = 1 minute)

READ_ONLY float __gas_cloud_last_time = -1.0 (rl = 1 minute)

float __gas_cloud_ttl = 2.0 (rl = 1 minute)

Vector __gas_cloud_color = Vector(1,1,0) (rl = 1 minute)

float __gas_cloud_radius = 2.0 (rl = 1 minute)

float __gas_cloud_trigger_dist = 48.0 (rl = 1 minute)

float __turn_speed = 1.0 (rl = 1 minute)

bool __turning_disabled = false (rl = 1 hour)

bool __turn_towards_player = false (rl = 1 hour)

bool __turn_around_vel = false (rl = 1 hour)

bool __mesh_fixed_frame = false (rl = 1 minute)

Vector __mesh_fixed_frame_v1 = Vector(1,0,0) (rl = 1 minute)

Vector __mesh_fixed_frame_v2 = Vector(0,1,0) (rl = 1 minute)

Vector __mesh_fixed_frame_v3 = Vector(0,0,1) (rl = 1 minute)

READ_ONLY bool __towards_viewer_valid = false (rl = 1 minute)

READ_ONLY Vector __towards_viewer_vec = Vector(0,0,0) (rl = 1 minute)

READ_ONLY Vector __towards_viewer_dir = Vector(0,0,1) (rl = 1 minute)

READ_ONLY float __dist_to_viewer = -1.0 (rl = 1 minute)

READ_ONLY float __dist_to_viewer_old = -1.0 (rl = 1 minute)

string __death_anim = "" (rl = 1 minute)

READ_ONLY int __death_anim_stage = 0 (rl = 1 minute)

float __death_anim_start = -1.0 (rl = 1 minute)

float __death_anim_end = -1.0 (rl = 1 minute)

float __death_anim_alpha_fade_alpha1 = 1.0 (rl = 1 minute)

float __death_anim_alpha_fade_alpha2 = 1.0 (rl = 1 minute)

CHAPTER 12. MOVING ENTITY LUA SCRIPTS 102

12.7 Explanation of all moving entity built-in
vars

12.7.1 disable saving

static bool __disable_saving = false

For every variable, you can disable whether on not it is saved to file when it is
changed. This is described in Section 15.2.5. The variable __disable_saving,
when true, will make it so all variables are disabled from being saved. Indeed,
when saving the game and exiting, there will be no trace left behind of a moving
entity where __disable_saving is true.

12.7.2 from world gen

READ_ONLY bool __from_world_gen = false

This variable is true iff the moving entity was created in procedural world
generation code. This variable is saved to file in a unique way.

Moving entities where __from_world_gen is false are also called roaming.
For a moving entity where __from_world_gen is true (a non-roaming entity), we
break into two categories: grounded non-roaming entities and non-grounded
(or moved) non-roaming entities. A non-roaming entity is called grounded iff
it is still in the chunk where it was procedurally generated. Otherwise, it has
moved from its original chunk. This version of the game does not support
non-roaming entities moving from their original chunk. In other words, all non-
roaming entities must be grounded. This may change in a later version of the
game.

12.7.3 grounded

READ_ONLY bool __grounded

This is true iff the ment was created by procedural world generation and has
not moved from its original chunk.

12.7.4 grounded offset

12.7.5 grounded offset old

READ_ONLY Vector __grounded_offset

READ_ONLY Vector __grounded_offset_old

These are used internally by the engine.

CHAPTER 12. MOVING ENTITY LUA SCRIPTS 103

12.7.6 ttl, ttl grounded, game end time

static float __ttl = -1.0

static float __ttl_grounded = 60*60 (1 hour)

float __game_end_time = -1.0

The variable __ttl should be more precisely called “__ttl_roaming”, but
we call it __ttl because it is the most common type of ttl which is modified.
The variable __ttl is the length of time (in seconds) a roaming entity exists
after it is created.

Similarly, __ttl_grounded is the length of time (in seconds) a non-roaming
moving entity exists (a moving entity created from procedural world generation)
before it is reverted back to its original state. To make life simple, it makes sense
to leave __ttl_grounded as one hour: all changes to a moving entity will be
reverted in one hour. Note that once all variables of a moving entity have
reverted to their default value, then the moving entity itself is automatically
reverted by the engine. So one hour is an upper bound for how long it will take
a moving entity to be fully reverted.

If a moving entity is roaming, then let length = __ttl, and if a mov-
ing entity is non-roaming then let length = __ttl_grounded. The variable
__game_end_time is set when a moving entity is created and it is set to

__game_end_time = current_game_time + length;

So if the moving entity is roaming and the __game_end_time is reached, the
moving entity will be removed. On the other hand if it is non-roaming and
the __game_end_time is reached the moving entity will be reverted back to its
original state.

Note that __game_end_time is in game time, not in a level’s time.
Suppose we want to accomplish the following: we have a moving entity type

called “goblin” and we want some goblins to be removed 5 minutes after their
creation and others to be removed 7 minutes after their creation. Since __ttl

and __ttl_grounded are both static, we cannot modify these to accomplish this
task. Instead, we must manually set __game_end_time. This can be done as
follows (inside a game Lua script):

ga_ment_start(level, pos, "goblin")

local game_time = ga_get_sys_f("game.time.total")

local len = 60*5

if(should_make_long) then len = 60*7 end

ga_ment_init_set_f("__game_end_time", game_time + len)

ga_ment_end()

Once __game_end_time is set to a positive value for a moving entity, the
engine ignores __ttl and __ttl_grounded for that moving entity. However, if
you manually set __game_end_time, this must be done during the initialization
phase as in the example above.

CHAPTER 12. MOVING ENTITY LUA SCRIPTS 104

12.7.7 respawn length

float __respawn_length = 60*60 (one hour)

The variable __respawn_length only applies to non-roaming entities (enti-
ties created by procedural world generation). Non-roaming entities get reverted
at the game time __game_end_time. However it is possible for non-roaming
moving entities to be “removed” beforehand.

Once we remove a non-roaming moving entity, then it will remain gone and
will not respawn for __respawn_length many seconds. After removing a non-
roaming entity, in the chunk where the entity was originally created we leave a
tag which says that the moving entity has been removed. In part of this tag, we
say when the the moving entity will respawn. So if you kill a non-roaming troll
that is in its original chunk (that has a one hour respawn time), walk away for a
minute, then come back, then the troll will not be there (it will not be recreated
by procedural world generation). However if you kill the troll, walk away for
two hours and then return, then it will be there (it will have respawned).

12.7.8 add to live world time

READ_ONLY float __add_to_live_world_time = -1.0

This is set to the current game time when the ment is added to the active
chunk tree. Note that when the player loads a game, ments get re-added to the
active chunk tree.

Also, if you load a chunk, move away so the chunk gets despawned, and then
move back so the chunk gets created again, the ments that were saved as being
in that chunk will be added to the active chunk tree again.

12.7.9 extra min levels, extra max levels

static int __extra_min_levels = 0

static int __extra_max_levels = 0

Both __extra_min_levels and __extra_max_levels should be non-negative
integers. For every moving entity, there is a min and a max level where it can
exist. The variable __start_level is set to the level of the starting chunk where
the moving entity was created. Then immediately afterwards the __min_level
and __max_level variables are set as follows:

__min_level = start_level - __extra_min_levels

__max_level = start_level + __extra_max_levels

12.7.10 start level, min level, max level

READ_ONLY int __start_level = -1

READ_ONLY int __min_level = -1

READ_ONLY int __max_level = -1

CHAPTER 12. MOVING ENTITY LUA SCRIPTS 105

These are described in the previous subsection.

12.7.11 level, chunk id

READ_ONLY int __level = -1

READ_ONLY int __chunk_id = -1

These describe the level that the moving entity is in together with the
chunk_id of the chunk which contains the moving entity. These variables are
not saved and loaded in the usual way.

12.7.12 offset, offset old

READ_ONLY Vector __offset = Vector(7.5, 7.5, 7.5)

READ_ONLY Vector __offset_old = Vector(7.5, 7.5, 7.5)

Let’s say the moving entity is in chunk C. The variable __offset describes
the position of the entity inside chunk C. The variable __offset_old describes
the position of the entity during the last discrete update (but still with respect
to chunk C). The reason we have both __offset and __offset_old is because
during rendering, we render a moving entity as an interpolation between two
updates. So even though the game has only 25 discrete updates per second, we
can achieve a higher frame rate by interpolation.

These variables are not saved and loaded in the usual way. For example,
the “base chunk” is the unique chunk that contains the moving entity that is
on level __min_level. When we save a game we save a moving entity in the
chunk file associated to the base chunk of the entity. The offset that is stored
is relative to that base chunk.

12.7.13 vel

Vector __vel = Vector(0.0, 0.0, 0.0)

This is the velocity of the moving entity. During each discrete update phase,
the engine will attempt to move the moving entity according to this velocity.

bool __vel_disabled = false

When __vel_disabled is true, the ment will behave as if it has the zero
vector for its velocity. The reason we have this variable is to easily pause the
movement of a ment while being able to remember its velocity.

12.7.14 mesh

string __mesh = ""

CHAPTER 12. MOVING ENTITY LUA SCRIPTS 106

The __mesh variable determines the mesh name to be used for the moving
entity. The corresponding mesh should be listed in “Meshes/mesh_names.txt”.
Note that the file mesh_names.txt associates each mesh name to a wavefront.obj
file (for the mesh itself) as well as a texture name.

When the package is loaded, the __mesh variable for a moving entity type
is set to the name of that moving entity. So for example, if the moving entity
troll.lua does not define __mesh, then by default the __mesh variable for troll
moving entities is “troll”.

If mesh is the empty string, then the moving entity will be invisible.

12.7.15 alpha

float __alpha = 1.0

If this is 1.0, the ment is rendered normally. Otherwise, if it < 1.0 and ≥ 0.0,
then it is rendered partially transparent.

12.7.16 tex override

string __tex_override = ""

Recall that the mesh name __mesh of the moving entity is associated to a
wavefront.obj file and a texture name. The file

Meshes/mesh_names.txt

defines these associations. When __tex_override is not the empty string, the
same wavefront.obj is used but instead the string __tex_override will be used
for the texture name. When __tex_override is the empty string, the original
texture name associated to the mesh name is used.

This can be used for creating a freezing gun which, when it hits a monster,
it sets the monster’s __tex_override string to the name of an ice texture.

12.7.17 min render dist, max render dist

float __min_render_dist = -1.0

float __max_render_dist = -1.0

If __min_render_dist is > 0.0, then the ment is not rendered if its distance
to the player is less than that distance.

If __min_render_dist is> 0.0 AND __max_render_dist> 0.0 as well, then
the ment is not rendered if its distance to the player is greater than that distance.
The reason why we require __min_render_dist > 0 here is for performance
reasons.

CHAPTER 12. MOVING ENTITY LUA SCRIPTS 107

12.7.18 max screen size, max screen size time len

float __max_screen_size = -1.0

float __max_screen_size_time_len = -1.0

When __max_screen_size is > 0.0, the ment is not rendered if its apparent
size of the screen is that much. For example, if this is set to 1.0, then the ment
is not rendered if its length in screen space is the width of the screen (roughly).

This check only takes place for X seconds after the ment was added to the
live world (the active chunk tree), where X is the value of the max screen size
time length variable.

The typical use of these two functions is when the player launches a rocket.
We do not want to render the rocket if it is too close to the camera.

12.7.19 team id source, team id target

int __team_id_source = 0

int __team_id_target = 0

Team 0 is neutral, team 1 is the player, team 2 is typical monsters. Typically
for the hitter entity to attack a hittie entity, then 1) the hitter must have a non-
zero source team id, 2) the hittie must have a non-zero target team id, and 3)
the source team id and the target team id must be different.

Consider a monster’s rocket projectile. It would have __team_id_source =
2. If that rocket has __team_id_target = 0, then the player cannot shoot the
rocket down. On the other hand, if the rocket has __team_id_target = 2, then
the player can shoot down the rocket.

Note that in terms of one moving entity hitting another in the usual collision
detection system, it is up to you to enforce this convention about the team source
id of the hitter and the team target id of the hittie. That is, the __on_ment_hit
function of the hitter moving entity should look at these team ids and if there
is a mismatch then the function should return false (specifying that the hit is
not terminal).

12.7.20 collides

bool __collides = true

There are several collision related variables:

� __collides,

� __solid_wrt_player,

� __point_block_correct, and

� __ment_correct.

CHAPTER 12. MOVING ENTITY LUA SCRIPTS 108

When the variable __collides is true, when we try to move the ment, we
will see if it collides with other objects. Such collisions result in the callback
functions being called, such as __on_block_hit and __on_ment_hit functions
of the moving entity being called when there is a collision. That is, these
collisions are detected by moving the moving entity while keeping everything
else in the world still. If one of these callback functions returns true, which
signifies that the collision is “terminal”, then the ment will stop moving at the
location of the collision. Note that during this collision detection, the ment is
treated as a moving point, not a moving sphere.

So note that __collides being true does not mean the ment will be pushed
away from blocks and other ments. For that, see __point_block_correct and
__ment_correct.

12.7.21 solid wrt player

bool __solid_wrt_player = false

The variable __solid_wrt_player is true iff the player cannot move through
the moving entity. When this is true, the ment is physically modeled as a sphere
with a certain radius (the radius given by the function ga_ment_get_radius).
That is, when we try to move the player, a moving entity with this variable
set to true is treated as a solid immovable sphere that the player cannot move
through.

12.7.22 point block correct and ment correct

bool __point_block_correct = false (rl = 1 minute)

bool __ment_correct = false (rl = 1 minute)

If __ment_correct is set to true, then once every discrete update, we will
push the moving entity away from all other moving entities, as if the other
moving entities are immovable solid spheres.

For __point_block_correct, we cheat to make the math simpler. That is,
when this variable is set to true, then the center of the moving entity is pushed
away from solid blocks (once every discrete update). We try to move the ment
so that its center is no longer inside of any solid block. However the sphere of
the ment could still be intersecting blocks.

12.7.23 radius, radius lvlinv

float __radius = 1.0

bool __radius_lvlinv = false

Every moving entity is modeled as a sphere from the point of view of the
engine. The variable __radius and __radius_lvlinv determine the radius of
this sphere.

CHAPTER 12. MOVING ENTITY LUA SCRIPTS 109

Specifically, suppose __radius_lvlinv is true. Then no matter what level
the moving entity is on, it will have radius __radius. lvlinv stands for “level
invariance”.

On the other hand suppose __radius_lvlinv is false. Then when the mov-
ing entity is on its starting level, it will have radius __radius. However when
the moving entity moves either up or down in level, the radius will change ac-
cordingly. For example, when the moving entity moves from level 53 to 54, its
radius will be scaled by a factor of 16.0. This way when the moving entity moves
from one level to another, it will look smooth and the player will not notice any
change.

12.7.24 homing, etc

bool __homing = false

float __homing_speed = 1.0

float __homing_min_dist = 0.0

READ_ONLY int __homing_target = -1

bool __homing_player_pathing = false

bool __homing_player_vis_test = false

bool __homing_only_diff_level = false

When __homing is true, the moving entity will turn towards targets (but still
with the same speed). The variables __team_id_source and __team_id_target
are used for this. For example, when __homing is true and __team_id_source

is 1 (1 represents the player), then the moving entity will be attracted to all
moving entities whose __team_id_target variables are 2.

The variable __homing_target is used to track what moving entity the cur-
rent moving entity is homing towards. If this is ≥ 0, the moving entity is homing
towards the moving entity with that instance id. If __homing_target is -1, then
the moving entity has not yet tried to acquire a target. If __homing_target is
-2, then the moving entity tried to acquire a target but failed.

The variable __homing_speed is the speed at which the ment moves when
it is homing (it does not use the previous length of the __vel vector).

__homing_min_dist is the closest the ment can be to its target before it
temporarily stops.

If __homing_player_pathing is true and the ment is homing towards the
player, then the ment will go around corners to reach the player.

If __homing_player_vis_test is true, the ment must be visible to the player
in order for the ment to move.

If __homing_only_diff_level is true, the ment only moves if it has a dif-
ferent level than its target.

12.7.25 gas cloud period, etc

float __gas_cloud_period = -1.0

READ_ONLY float __gas_cloud_last_time = -1.0

CHAPTER 12. MOVING ENTITY LUA SCRIPTS 110

float __gas_cloud_ttl = 2.0

Vector __gas_cloud_color = Vector(1.0, 1.0, 0.0)

float __gas_cloud_radius = 2.0

float __gas_cloud_trigger_dist = 48

When __gas_cloud_period is > 0.0, a cloud of particles is emitted by the
ment whenever the player is near. The variable __gas_cloud_last_time is
used internally. The variable __gas_cloud_ttl specifies how many seconds
each particle lasts. The variable __gas_cloud_color specifies the color of the
particles. The variable __gas_cloud_radius specifies how far away the particles
are from the ment center. The variable __gas_cloud_trigger_dist specifies
how close the player must be to the ment for it to emit particles.

12.7.26 turn speed, turn towards player, turning disabled

float __turn_speed = 1.0

bool __turning_disabled = false

bool __turn_towards_player = false

bool __turn_around_vel = false

When a moving entity is put in the world, it starts with a random orientation.
Its “turning speed” is specified by __turn_speed. When __turning_disabled

is true, turning is disabled.
If __turn_towards_player is true, then the ment will turn towards the

player with a speed specified by __turn_speed. That is, it will rotate the “Axis
1” of the ment’s frame towards the player. This is overrided if __turn_around_vel
is true, in which case the ment will turn about the axis of the velocity vector of
the ment (with the given turn speed). Also when __turn_around_vel is true,
the “Axis 3” of the ment’s frame will point in the direction of the velocity vector
(so the ment will be rotating about the “Axis 3” of its frame).

12.7.27 mesh fixed frame, mesh fixed frame vX

bool __mesh_fixed_frame = false

Vector __mesh_fixed_frame_v1 = Vector(1.0, 0.0, 0.0)

Vector __mesh_fixed_frame_v2 = Vector(0.0, 1.0, 0.0)

Vector __mesh_fixed_frame_v3 = Vector(0.0, 0.0, 1.0)

Use these functions to micromanage the orientation of the ment. When
__mesh_fixed_frame is true, the orientation of the moving entity will be over-
ridden. In this case, the orientation is specified by the three ‘fixed frame” vectors
(which should be orthogonal and have length one).

12.7.28 towards viewerXXX and dist to viewerXXX

READ_ONLY bool __towards_viewer_valid = false

READ_ONLY Vector __towards_viewer_vec = Vector(0.0, 0.0, 0.0)

CHAPTER 12. MOVING ENTITY LUA SCRIPTS 111

READ_ONLY Vector __towards_viewer_dir = Vector(0.0, 0.0, 1.0)

READ_ONLY float __dist_to_viewer = -1.0

READ_ONLY float __dist_to_viewer_old = -1.0

Not only are these read only, but you should not even read from these.
Instead you should use the following Game Lua-to-C API functions (but that
may change in a later version of the game):

Vector ga_ment_get_var_special_vec_to_viewer(int inst_id);

float ga_ment_get_var_special_dist_to_viewer(int inst_id);

The variables __towards_viewer_XXX and __dist_to_viewer are used to
cache values which these functions can return. The purpose of having both
__dist_to_viewer and __dist_to_viewer_old is so that the __on_closest

function can be called appropriately.
Note: none of these variables are saved to file.

12.7.29 death animXXX

string __death_anim = ""

READ_ONLY int __death_anim_stage = 0

float __death_anim_start = -1.0

float __death_anim_end = -1.0

float __death_anim_alpha_fade_alpha1 = 1.0

float __death_anim_alpha_fade_alpha2 = 1.0

When a moving entity “dies”, it can optionally use a “death animation”.
Note: the rendering is done by the engine. Right now here the possible options
for __death_anim:

� “alpha_fade”

� “dark_hole”

When __death_anim is set to “dark_hole”, the moving entity will gradually
shrink until it is a single point. The time __death_anim_start (in game time)
specifies when the shrinking starts and the __death_anim_end specifies when
the shrinking ends (and the entity has become a single point). The variable
__death_anim_stage is used by the engine to track which stage of the death
animation we are in.

When __death_anim is set to “alpha_fade”, the ment will have its alpha be
set to a value between __death_anim_alpha_fade_alpha1 and __death_anim_alpha_fade_alpha2
for each time that is between __death_anim_start and __death_anim_end.

Here is code for a “black hole bullet” moving entity which, when it hits
another moving entity, it will cause that entity to shrink to a point.

bool function p.__on_ment_hit(

hitter_inst_id, hittie_inst_id,

CHAPTER 12. MOVING ENTITY LUA SCRIPTS 112

level, lp, normal)

--

local hittie_type = ga_ment_get_type(hittie_inst_id)

if not ga_ment_var_exists(hittie_type, "health") then return end

ga_ment_set_i(hittie_inst_id, "health", 0) --Killing the hittie.

--Special dark hole death animation.

--The hittie entity will shrink down to a point

--for the next 2 seconds.

ga_ment_set_s(hittie_inst_id, "__death_anim", "dark_hole")

local game_time = ga_get_game_time()

ga_ment_set_f(hittie_inst_id, "__death_anim_start", game_time)

ga_ment_set_f(hittie_inst_id, "__death_anim_end", game_time + 2.0)

--It is a terminal hit

--(the bullet will stop now).

return true

end

Chapter 13

Window Lua Scripts

13.1 Introduction

There are three types of windows:

� Main menu windows

� Game windows

� HUD windows

All windows Lua scripts are put in the Windows directory of the package.

13.1.1 Window IDs (WIDs)

Every window has a window id (a “wid”). Consider a game window, for example.
The first time a game window associated to a given window Lua script is pushed
onto the game window stack, that window will be assigned a wid.

Note that a wid is associated to the window Lua script itself, not
to the instance of the window.

So if we add a window to the game window stack, then pop it off, then push
it on again, it should be assigned the same wid in the end.

13.1.2 Stacks vs Sets

The main menu windows are put into a “stack”. Only the top window in this
stack is rendered, and only the top window in this stack is given user input.
Windows can be “pushed” into or “popped” from this stack.

Game windows are also put into a similar stack.
HUD windows, on the other hand, exist in a “set”. All HUD windows in the

set are rendered when the player is in the game (and there are no windows in
the main menu window stack or the game window stack). Care must be taken
to specify in which order the HUD windows are rendered (one is rendered on
top of another).

113

CHAPTER 13. WINDOW LUA SCRIPTS 114

13.2 Main Menu Windows

Main menu windows can be accessed from the “package’s top menu”. That is,
when you are in a game, if you go to MAIN MENU → OPTIONS → PACKAGE
TOP MENU you will be able to access the top most main menu window. This
top most main menu window script MUST be called

“main menu.lua”.

Here are the main menu window lua script module functions:

//---

// Main Menu Windows Module Functions

//---

string __get_name(int wid);

void __on_start(int wid);

void __on_end(int wid);

void __process_input(int wid);

void __render(int wid);

void __update_always(int wid);

13.2.1 p. get name

string __get_name(int wid);

The official name of a window is simply the name of the Lua file that defines
it, without the ”.lua” at the end.

However the function get name should return a human readable and friendly
version of the window name. This is used, for example, when displaying the list
of HUD Side Displays.

13.2.2 p. on start

void __on_start(int wid);

Consider the lua script “my window.lua”. When a window of this type is
pushed onto the main menu window stack, then this on start function will be
called. This function is passed the window id (wid) of the window.

Note that it is intended that there is at most one instance of a
window for each window Lua script.

Here is what the p.on start function of my window.lua might look like:

function p.__on_start(wid)

ga_play_sound_menu("chimes_sound")

end

Here the on start function is playing the sound “chimes sound”. There
are two ways to play sounds (that are not “music”): 1) ga play sound and

CHAPTER 13. WINDOW LUA SCRIPTS 115

2) ga play sound menu. The ga play sound functions plays a “game” sound
whereas the ga play sound menu functions plays a “menu” sound. When the
player is in a menu, all game sounds are paused (and so only menu sounds can
be played).

13.2.3 p. on end

void __on_end(int wid);

Consider the lua script “my window.lua”. When a window of this type is
popped from the main menu window stack, then this on end function will be
called.

There is another situation when on end will be called. If W.lua is
the window on top of the main menu stack and another window is pushed on
top of it, then the p.on end function of W.lua will also be called.

Here is what the p.on end function of my window.lua might look like:

function p.__on_end(wid)

ga_play_sound_menu("sad_sound")

end

13.2.4 p. process input

void __process_input(int wid);

The process input function of a main menu window is called when it is time
to process user input (keyboard and mouse). It is called only if the window is
on TOP of the main menu window stack.

Here is possible code from the lua script “my window.lua”:

function p.__process_input(wid)

if ga_win_key_pressed(wid, "ESC") then

local return_to_game = true

ga_main_menu_pop_all(return_to_game)

return

end

if ga_win_key_pressed(wid, "X") then

ga_exit() --Exit the program.

end

end

Here, when the my window.lua is on top of the main menu window stack, if
the player pressed the ESCAPE key then all windows on the main menu window
stack will be popped and the player will return to the game. On the other hand,
if the player pressed the X key, then the program will exit.

CHAPTER 13. WINDOW LUA SCRIPTS 116

13.2.5 p. render

void __render(int wid);

The render function of a main menu window is called when it is time to
render the window. It is called only if the window is on TOP of the main menu
window stack.

Here is possible code from the lua script “my window.lua”:

function p.__render(wid)

ga_win_set_char_size(wid, 0.04, 0.08)

ga_win_txt_center(wid, 0.6, "PRESS ESCAPE TO GO BACK TO THE GAME")

ga_win_txt_center(wid, 0.3, "PRESS X TO EXIT THE GAME")

end

Here the ga win set char size function sets the text character size to be such
that letters have width 0.04 and height 0.08 (1.0 is the width of the screen and
1.0 is the height of the screen).

The ga win txt center renders text which is left-to-right centered in the mid-
dle of the screen, and it has the minimum y coordinate as specified.

13.2.6 p. update always

void __update_always(int wid);

This function on each window is called, even if the game is paused. Here is
an example:

function p.__update_always(wid)

if ga_get_game_paused() then return end

ga_print("Doing some updating.")

end

If you want more finely grained functions like update, update passive,
update discrete pre, and update discrete post, then put those functions in a

Game Lua Script (a script in the Game directory) and have those functions call
functions in your window script.

13.2.7 An Example

This is what the main menu.lua window script might look like:

function p.__on_start(wid)

local min_y = 0.25

local max_y = 0.75

local char_w = 0.03

local char_h = 0.06

local color = std.vec(0.0, 0.5, 0.5) --RGB.

CHAPTER 13. WINDOW LUA SCRIPTS 117

options = {

"GET FREE GOLD",

"LIST OF CHEAT CODES }

ga_win_widget_small_list_start(

wid, min_y, max_y, char_w, char_h,

color, options)

end

function p.__on_end(wid)

--Nothing to do.

end

function p.__process_input(wid)

local selection = ga_win_widget_small_list_process_input(wid)

local selection_str = ga_win_widget_small_list_entry(wid, selection)

if(selection_str == "GET FREE GOLD") then

ga_main_menu_push("win_get_free_gold")

return

end

if(selection_str == "LIST OF CHEAT CODES")

ga_main_menu_push("win_list_of_cheatcodes")

return

end

if ga_win_key_pressed(wid, "ESC") then

--Popping this window from the main menu window stack.

ga_main_menu_pop()

return

end

end

function p.__render(wid)

ga_win_set_char_size(wid, 0.04, 0.08)

ga_win_txt_center(wid, 0.85, "MAIN MENU")

--The small list widget will automatically be rendered.

end

You can read about the small list widget in Chapter 17.

13.3 Game Windows

Game Windows are basically identical to Main Menu Windows. The only main
difference is that there are two window stacks: one for each type of window.

You would use a game window if you wanted the player to look at their
inventory. You would use a main menu window if you wanted the player to be
able to change the difficulty of the game.

CHAPTER 13. WINDOW LUA SCRIPTS 118

13.4 HUD Windows

HUD windows are similar to main menu and game windows, except they do not
have on start and on end functions. They only have process input and render
functions. These functions are only called when there are no windows in either
the main menu window stack or the game window stack.

Chapter 14

Game Lua Scripts

14.1 Introduction

Recall that packages have the folder called “Game”. One purpose of this folder
is to define helper Lua function for use in other scripts.

The second purpose is to contain the file

“top.lua”.

This top.lua script contains functions that are called by the engine at various
points in time. In this chapter we will describe these functions. Functions in
scripts other than top.lua are called by the engine also.

14.2 All top.lua Module Functions

//---

// Game/top.lua Module Functions

//---

void top.__new_game();

void top.__load_game();

bool top___reboot_game();

void top.__update();

void top.__update_passive();

void top.__update_discrete_pre();

void top.__update_discrete_post();

string top.__game_input(string cmd_str);

string top.__game_input_get_all_cmds();

string top.__game_input_get_help_str(string cmd_name);

void top.__killed_player();

void top.__respawn_player(string param);

//---

119

CHAPTER 14. GAME LUA SCRIPTS 120

// Other "Game" script Module Functions

//---

void __load_game_early();

void __load_game();

void __update();

void __update_passive();

void __update_discrete_pre();

void __update_discrete_post();

void __render_augmented(int level);

14.3 top. new game

void top.__new_game();

This function is called when the player first creates a game. That is, this
function is only called once. When the player then loads the game later, the
load game function will be called (NOT the new game function). Something

you probably want to do in the new game function is search the world for a
suitable starting position for the player.

Here is what the new game function might look like (in Game/top.lua):

function p.__new_game()

--Setting the heath is not needed as long

--as the globals.txt file sets it accordingly.

ga_set_i("health", 200)

--Setting body to "fly" mode

--and the camera mode to use true up.

local trans = std.vec(0.0, 0.0, 0.0)

local radius = 0.3

local use_true_up = true

ga_move_set_body_fly(trans, radius, use_true_up)

end

14.4 top. load game

void top.load_game();

The load game function is called each time the player loads the game (just
after the engine finished the load). Here is an example of what the load function
might look like:

function p.__load_game()

--Adding windows to the hud.

--This is needed because when the game is loaded,

CHAPTER 14. GAME LUA SCRIPTS 121

--the game and window stacks and the hud window set

--are initially empty.

ga_hud_window_add("win_hud", 0)

end

14.5 top. reboot game

This is described in Section 16.37.
When the player “reboots” their game, the function top.reboot game will

be called over and over again until it return true. The purpose of the func-
tion reboot game is to specify which dynamic variables should be saved. Once
reboot game returns true, the function top.new game is called.

14.6 top. update

void top.__update();

When the player is in normal game play, the game calls an update function
every cycle. This could be called 60 or perhaps 100 or more times per second. On
the other hand, there are also “discrete updates” which occur exactly 25 times
per second. The functions top.update discrete pre and top.update discrete post
before and after the engine performs this discrete update.

14.7 top. update passive

void top.__update_passive();

This function is called when the player is in either a game menu or a main
menu. Note that when the player is in a menu, the game time is “frozen” (the
world should stand still, for the most part).

14.8 top. update discrete pre

void top.__update_discrete_pre();

This function is called just before the engine does a discrete update. Note
that there should be exactly 25 discrete updates per second (when the player is
in normal game play).

14.9 top. update discrete post

void top.__update_discrete_post();

CHAPTER 14. GAME LUA SCRIPTS 122

This function is called just after the engine does a discrete update. Here is
what the update discrete functions might do in Game/top.lua:

function p.__update_discrete_pre()

--Nothing to do.

end

function p.__update_discrete_post()

--Moving the player.

local travel = std.vec(0.0, 0.0, 0.0)

--Set the travel function depending

--on what keys are pressed...

ga_move_set_desired_travel(travel)

end

14.10 top. game input

string top.__game_input(string str);

The primary way that the engine gives commands to the package is via the
game input function. This function returns output in the form of a string.

The system command
game input str

causes top.game input to be called with the input string str. This can be used
for binding key and mouse events to game actions. For example, in the file
binds.txt we can have the following line:

PACKAGE_MOVE_JUMP SPACE.downup "" "game_input jump" ""

Then if the player pressed the space bar during normal game play, then the
command “game input jump” will be executed, which causes the top.game input
function to be called with the input string “jump”. It is up to top.game input
on how to interpret this command.

There are some commands that are called by the engine in certain circum-
stances. These command strings start and end with double underscores. For
example, game input will be passed the following strings by the engine in the
appropriate circumstances:

__game_saved__

__spiral_of_death__

__screenshot__

__screenshot_failed__

The expected response of top. game input to being passed these strings is
to display a message on the HUD to the user. “Spiral of death” refers to the
situation when it takes too long to process a discrete game update, so the engine
tries to perform several updates simultaneously to make up time.

CHAPTER 14. GAME LUA SCRIPTS 123

14.11 top. game input get all cmds

string top.__game_input_get_all_cmds();

This function should return a list of all the “commands” supported by the
package. These should be separated by semicolons (without a semicolon at the
end). For example, it might return the following:

fly;run;shoot

14.12 top. game input get help str

string top.__game_input_get_help_str(string cmd_name);

Returns a string documenting the specified command. Here is an example:

function p.__game_input_get_help_str(cmd_name)

if(cmd_name == "blue") then

return

"Usage: blue\n\n"

.. "Cheat code that causes the player "

.. "to teleport as if they used blue rings. "

end

-- ...

end

14.13 top. killed player

int top.__killed_player();

To (try to) kill the player, call the ga kill player Game Lua-to-C API func-
tion. If game.player.alive is false, nothing will happen. If god mode is on, noth-
ing will happen. Otherwise game.player.alive will be set to false and top.killed player
will be called.

14.14 top. respawn player

int top.__respawn_player(string param);

Once the player is dead, to respawn the player must call either the system
command

respawn passive

or the system command
respawn force.

CHAPTER 14. GAME LUA SCRIPTS 124

The respawn command optionally takes a second string argument param, which
is passed to top.__respawn_player. Then the engine will respawn the player
(which includes placing them at their respawn point). After all this, the engine
will call the function top.__respawn_player. Here is an example of what
top.respawn_player might look like:

function p.respawn_player(str_param)

ga_set_i("health", 100)

ga_set_i("bullets", 0)

ga_set_i("shells", 0)

ga_set_i("rockets", 0)

end

14.15 other. load game early

void other.__load_game_early();

If a game script (other than Game/top.lua) has this function, it will be called
when the game is loaded, before top.load game.

14.16 other. load game

void other.__load_game();

If a game script (other than Game/top.lua) has this function, it will be called
when the game is loaded, after top.load game.

14.17 The order in which load game functions
are called

To summarize, this is the order in which load functions are called:

1) The load game early functions in all game scripts other than “Game/top.lua”.

2) The function load game in “Game/top.lua”.

3) The load game functions in all game scripts other than “Game/top.lua”.

14.18 other. update

void other.__update();

This is just like top. update, except it is for game scripts other than top.
That is, it is called every frame when the game is unpaused.

CHAPTER 14. GAME LUA SCRIPTS 125

14.19 other. update passive

void other.__update_passive();

This is just like top. update passive, except it is for game scripts other than
top. That is, it is called every frame when the game is paused.

14.20 other. update discrete pre and post

void __update_discrete_pre();

void __update_discrete_post();

These are just like their “top” versions, except they are for the game scripts
other than top. Here is the order in which discrete update functions get per-
formed:

1) update discrete pre gets called for every game script other than top.lua.

2) top. update discrete pre gets called.

3) The engine performs its internal discrete update.

4) top. update discrete post gets called.

5) update discrete post gets called for every game script other than top.lua.

There are about 25 discrete updates per second. These only occur when the
game is unpaused.

14.21 other. render augmented

void __render_augmented(int level);

This function is called when the finest level of detail is being rendered. Right
now, the argument “level” is the same as the viewer level. Specifically, it is used
when opaque objects are being rendered on the level of the player. Within this
function you can call functions like the following to render objects:

� ga render push matrix,

� ga render pop matrix,

� ga render matrix translated, and

� ga render mesh.

This is all in the coordinate system of the level of the player.
So for example, if you “push the matrix”, translate by (13.5, 7.5, 9.5), render

a sphere mesh (whose model is centered at the origin), then “pop the matrix”,
what will happen is a sphere will be rendered at the block position (13,7,9).

In a later version of the engine we may allow rendering on multiple levels.
In that case, the level argument to the function would be important.

Chapter 15

The Initialization Lua-to-C
API

When the package is loaded, certain functions in lua scripts are called to initialize
various things. For example, consider a script “MovingEnts/bullet.lua”. This
has a function p.type init which is called when the package is initialized. This
function should in turn call functions that are part of the Initialization Lua-to-C
API to initialize various aspects of bullet type moving entities.

Functions in the Initialization Lua-to-C API can only be called at certain
times. One time is when the game calls bullet.type init, etc.

Note: ia stands for the “Initialization API”.

15.1 The Full Initialization Lua-to-C API

//---

// Initializing Moving Entity Types

//---

void ia_ment_new_var_b(int tid, string var, bool default_value, float revert_length);

void ia_ment_new_var_i(int tid, string var, int default_value, float revert_length);

void ia_ment_new_var_f(int tid, string var, float default_value, float revert_length);

void ia_ment_new_var_v(int tid, string var, Vector default_value, float revert_length);

void ia_ment_new_var_s(int tid, string var, string default_value, float revert_length);

void ia_ment_new_var_b_perm(int tid, string var, bool default_value);

void ia_ment_new_var_i_perm(int tid, string var, int default_value);

void ia_ment_new_var_f_perm(int tid, string var, float default_value);

void ia_ment_new_var_v_perm(int tid, string var, Vector default_value);

void ia_ment_new_var_s_perm(int tid, string var, string default_value);

void ia_ment_new_static_var_b(int tid, string var, bool value);

126

CHAPTER 15. THE INITIALIZATION LUA-TO-C API 127

void ia_ment_new_static_var_i(int tid, string var, int value);

void ia_ment_new_static_var_f(int tid, string var, float value);

void ia_ment_new_static_var_v(int tid, string var, Vector value);

void ia_ment_new_static_var_s(int tid, string var, string value);

void ia_ment_set_builtin_var_b(int tid, string var, bool value);

void ia_ment_set_builtin_var_i(int tid, string var, int value);

void ia_ment_set_builtin_var_f(int tid, string var, float value);

void ia_ment_set_builtin_var_v(int tid, string var, Vector value);

void ia_ment_set_builtin_var_s(int tid, string var, string value);

void ia_ment_set_var_saving(int tid, string var, bool value);

//---

// Initializing Block Types

//---

void ia_block_new_static_var_b(int tid, string var, bool value);

void ia_block_new_static_var_i(int tid, string var, int value);

void ia_block_new_static_var_f(int tid, string var, float value);

void ia_block_new_static_var_v(int tid, string var, Vector value);

void ia_block_new_static_var_s(int tid, string var, string value);

void ia_block_set_builtin_var_i(int tid, string var, int value);

void ia_block_set_builtin_var_s(int tid, string var, string value);

void ia_block_new_var_b(int tid, string var, bool value);

void ia_block_new_var_i(int tid, string var, int value);

void ia_block_new_var_f(int tid, string var, float value);

void ia_block_new_var_v(int tid, string var, Vector value);

void ia_block_new_var_s(int tid, string var, string value);

void ia_block_make_var_eph(int tid, string var, int rl);

void ia_block_make_var_not_eph(int tid, string var);

15.2 Moving Entity (Type) Initialization Func-
tions

These functions are intended to be called from the type init function of each
Moving Entity Lua Script. These functions all involve variables associated to a
moving entity.

There are five types of variables for moving entities: bools (b), ints (i),
floats(f), Vector(v), and strings (s). A vector is an (x,y,z) triple of floats.

The variables associated to a moving entity type must be defined via these

CHAPTER 15. THE INITIALIZATION LUA-TO-C API 128

functions before the main game begins.
Variables are either “static” or not. If a variable is static, then there is

a single variable for the moving entity type which has a value. This value is
associated to the type, and not the instance. For example, if the troll moving
entity has the static integer variable “max health” which is set to 200, then all
trolls have their max health variables set to 200 (and these variables cannot
be changed). On the other hand, if the troll moving entity has the non-static
integer variable “health” which is initially set to 200, then all trolls initially
have their health variable set to 200, however this variable can change for each
troll.

Consider an instance of a troll moving entity. If its (non-static) health
variable is changed, then it will remain changed for a certain amount of time,
called the revert length. After the revert length amount of time has passed,
the health variable will be reset to its default value.

15.2.1 ia ment new var XXX

void ia_ment_new_var_b(int tid, string var, bool default_value, float revert_length);

void ia_ment_new_var_i(int tid, string var, int default_value, float revert_length);

void ia_ment_new_var_f(int tid, string var, float default_value, float revert_length);

void ia_ment_new_var_v(int tid, string var, Vector default_value, float revert_length);

void ia_ment_new_var_s(int tid, string var, string default_value, float revert_length);

You can use these functions to create a new (non-static) variable associated
to a moving entity type.

For example, the following code in the MovingEnts/troll.lua will create the
variable “health” in the troll moving entity type.

function p.__type_init(tid)

ia_ment_new_var_i(tid, "health", 200, 60.0 * 60.0)

end

The tid is an integer id for the moving entity type. Here the health variable is
set to have the default value of 200 (so new trolls that are created during game
play will initially have health 200). The revert time of the variable is one hour
(60*60 = 3600 seconds). Thus, if the player damages a troll (but does not kill
it), then the troll’s health will change and it will remain changed for one hour.
After one hour, the troll’s health will revert back to the default value of 200.

These functions can be called multiple times. For example, the following is
valid in the troll.lua file:

function p.__type_init(tid)

ia_ment_new_var_i(tid, "health", 199, 60.0 * 60.0)

ia_ment_new_var_i(tid, "health", 200, 60.0 * 60.0)

end

The result of this will be that the moving entity has an integer variable called
“health” which is set to the initial value 200 for each troll.

CHAPTER 15. THE INITIALIZATION LUA-TO-C API 129

15.2.2 ia ment new var XXX perm

void ia_ment_new_var_b_perm(int tid, string var, bool default_value);

void ia_ment_new_var_i_perm(int tid, string var, int default_value);

void ia_ment_new_var_f_perm(int tid, string var, float default_value);

void ia_ment_new_var_v_perm(int tid, string var, Vector default_value);

void ia_ment_new_var_s_perm(int tid, string var, string default_value);

These are helper functions. Each function is equivalent to calling the cor-
responding ia ment new var XXX function but with 100 thousand hours as a
revert length.

Be careful about having revert lengths be too long, because if so then the
saved game files will be filled with crap that is not needed. A simple system is
to have ments have a time to live (ttl) of at most one hour. When an ment is
removed, its variables are not saved.

15.2.3 ia ment new static var XXX

void ia_ment_new_static_var_b(int tid, string var, bool value);

void ia_ment_new_static_var_i(int tid, string var, int value);

void ia_ment_new_static_var_f(int tid, string var, float value);

void ia_ment_new_static_var_v(int tid, string var, Vector value);

void ia_ment_new_static_var_s(int tid, string var, string value);

These functions are used to create new static variables associated to moving
entities. Recall that static vars are associated to the moving entity type, not
individual moving entity instances.

Consider the following type init function of a troll moving entity Lua script:

function p.__type_init(tid)

ia_ment_new_static_var_i(tid, "max_health", 200)

ia_ment_new_var_i(tid, "health", 200, 60.0 * 60.0)

end

This causes moving entities of type troll to have both a max health and a health
variable (which are both integers). However although each troll has its own
health value, all the trolls share the same max health value (which is 200).

These new static var functions can be called multiple times, just like their
non-static versions.

15.2.4 ia ment set builtin var XXX

void ia_ment_set_builtin_var_b(int tid, string var, bool value);

void ia_ment_set_builtin_var_i(int tid, string var, int value);

void ia_ment_set_builtin_var_f(int tid, string var, float value);

void ia_ment_set_builtin_var_v(int tid, string var, Vector value);

void ia_ment_set_builtin_var_s(int tid, string var, string value);

CHAPTER 15. THE INITIALIZATION LUA-TO-C API 130

The engine automatically creates certain variables for each moving entity.
The names of all of these start with a double underscore (so you should not
create your own variable starting with double underscores). See Section 12.6
for a list of all the built-in moving entity variables, and see Section 12.7 for an
explanation of what these variables do.

15.2.5 ia ment set var saving

void ia_ment_set_var_saving(int tid, string var, bool value);

When in the game a change is made to the world, this needs at some point
to be saved to a file. For example, if we damage a troll, that will modify its
health variable and so that needs to be changed. However certain variables are
not very important in the long term and so they do not need to be saved. For
every moving entity variable you can change whether or not it needs to be saved
when it is changed. Let’s say the trolls have a variable called last scream time
that we want to make so it is not saved to file.

Then the troll.lua file might contain the following:

function p.__type_init(tid)

--The health variable (default valid = 200, revert length = one hour).

--When the health of a troll changes, this var will be flagged

--for saving (so during the next save it will be saved).

ia_ment_new_var_i(tid, "health", 200, 60.0 * 60.0)

--The last_scream_time variable.

--The next time the game is saved,

--this variable (for each moving entity) will NOT be saved.

ia_ment_new_var_f(tid, "last_scream_time", 0.0, 60.0)

ia_ment_set_var_saving(tid, "last_scream_time", false)

end

Static variables are not saved to file.
Also, every moving entity type has a built-in (static) variable called disable saving.

When this is true, then NO variables for the moving entity type will be saved
to file. Indeed, when this is true, moving entities of that type are not saved in
any way to file.

15.3 Block (Type) Initialization Functions

These functions are intended to be called from the type init function of each
Block Lua Script. These functions all involve variables associated to a moving
entity.

There are five types of variables for moving entities: bools (b), ints (i),
floats(f), Vector(v), and strings (s). A vector is an (x,y,z) triple of floats.

The variables associated to a block type must be defined via these functions
before the main game begins.

CHAPTER 15. THE INITIALIZATION LUA-TO-C API 131

Variables are either “static” or not. If a variable is static, then there is
a single variable for the moving entity type which has a value. This value is
associated to the type, and not the instance.

15.3.1 ia block new var XXX

void ia_block_new_var_b(int tid, string var, bool value)

void ia_block_new_var_i(int tid, string var, int value)

void ia_block_new_var_f(int tid, string var, float value)

void ia_block_new_var_v(int tid, string var, Vector value)

void ia_block_new_var_s(int tid, string var, string value)

Use the functions to set variables associated to a block type. The tid is the
type id, which is passed as an argument to each block script’s type init function.
For example, here is what the type init function in the file block soda machine.lua
might look like:

function p.__type_init(tid)

--Initially the machine has 10 sodas.

ia_block_new_var_i(tid, "num_sodas", 10)

--A vector representing the location where sodas as spawned

--when the player uses the block.

ia_block_new_var_v(tid, "spawning_location", std.vec(1.0, 2.0, 3.0))

end

15.3.2 ia block set builtin var XXX

void ia_block_set_builtin_var_i(int tid, string var, int value);

void ia_block_set_builtin_var_s(int tid, string var, string value);

Use these functions to set block variables that are “built-in”. You can tell
if a variable is built-in because it starts with a double underscore. Here is an
example:

function p.__type_init(tid)

ia_block_set_builtin_var_s(

tid, "__special_collision_type", "ONE_WAY_X_POS")

end

Currently here are all the built-in block variables:

static int __revert_length_bottom = 60*60 (one_hour)

static int __revert_length_default = 60*60 (one_hour)

string __special_collision_type = ""

CHAPTER 15. THE INITIALIZATION LUA-TO-C API 132

If a block in the world has its original block type (its block type has not
been changed), then if a variable in the block is modified, it will revert back to
its default value in __revert_length_bottom many seconds.

If a block type is changed to have new block type, then the block will revert
to its old block type in bt’s __revert_length_default many seconds (unless
we specify the revert time in the change block type function).

15.3.3 ia block new static var XXX

void ia_block_new_static_var_b(int tid, string var, bool value)

void ia_block_new_static_var_i(int tid, string var, int value)

void ia_block_new_static_var_f(int tid, string var, float value)

void ia_block_new_static_var_v(int tid, string var, Vector value)

void ia_block_new_static_var_s(int tid, string var, string value)

You use these functions just like their non-static versions. Use such a func-
tion to create a variable associated to a block type where ALL blocks of that
type have the same value for this variable. For example, this is what the type
init function might look like for block wood.lua:

function p.__type_init(tid)

--Creating a new static var called "description".

ia_block_new_static_var_s(tid, "description", "This is a wood block")

end

All wood blocks now have the immutable value “This is a wood block”
assigned to the static variable “description”.

15.4 Block Stacks

Before we say anything more about blocks, it is important to understand the
concept of a “block stack”. Fractal Block World does not just store a single
block at any given block location. Instead, it stores a “stack of blocks”.

The bottom block in the stack is the original block that was created by
procedural world generation. If the player then modifies that location by either
digging to create an empty block or by creating a solid block there, this actually
just pushes a block onto the stack. The original block from procedural world
generation is still stored in the block stack (at the bottom of the stack). Every
block that is added to the stack has a “revert time”. Once the game time reaches
this time, the block is popped from the stack.

For example, suppose the original block at a location is an air block, and
then the player creates a brick block at that location. Suppose the revert time
of the brick block is one hour in the future. Then in one hour, the brick block
will be removed and the original air block will occupy that location.

Every block on a block stack stores variables. All of these variable need
to have been registered with the block type with the ia block new var XXX or

CHAPTER 15. THE INITIALIZATION LUA-TO-C API 133

ia block new static var XXX functions. Each one of these variables lasts the
entire lifetime the block (on a block stack) that stores it. However there is
one exception. The exception is that some block variables can be set to be
“ephemeral”.

If a variable is ephemeral and it is at the bottom of a block stack, then the
variable has a revert time. Once that game time is reached, the variable is
reverted back to the default value of the variable.

Note also that the block at the bottom of a block stack has a revert time.
When this time is reached, all variables for the block are reverted. The idea is
that the revert time of a ephemeral variable should be less than the revert time
of the bottom block of a block stack.

15.4.1 Ephemeral block variables

void ia_block_make_var_eph(int tid, string var, int rl)

void ia_block_make_var_not_eph(int tid, string var)

Use these function in a type init function of a block script to make a variable
either ephemeral or not ephemeral. These functions must be called after the
variable is created. By default, every variable is NOT ephemeral. The number
rl is the “revert length”: when the variable is changed at time T, it will be
reverted at time T + rl. Here is an example:

function p.type_init(tid)

ia_block_new_var_i(tid, "cooldown", 10)

--One minute revert length.

ia_block_make_var_eph(tid, "cooldown", 60)

Chapter 16

The Game Lua-to-C API

In this chapter we will discuss the “Game Lua-to-C API”. The Game Lua API is
an API which certain Lua scripts are able to access. It provides “game” related
features, such as shrinking the player, etc. The API functions are implemented
in the C++ engine of the program. Here are the scripts that can use the API:

� Environment Rects (in EnvRects/)

� Basic Entites (in BasicEnts/)

� Game Lua Modules (in Game/)

� Moving Entities (in MovingEnts/)

� Windows (in Windows/)

Note: the Chunk Generation Scripts in WorldNodes/ cannot access the
Game Lua API. This is because the Chunk Generation Scripts are run in sepa-
rate threads. The “Game Lua modules” will be discussed in a later chapter.

16.1 The 6 Directions and 3 Axes

In the game there are 6 directions: front, back, left, right, up, down. When
creating the world there are also 6 directions: x pos, x neg, y pos, y neg, z pos,
z neg. Here are the integers associated to these:

x_pos -> 0

x_neg -> 1

y_pos -> 2

y_neg -> 3

z_pos -> 4

z_neg -> 5

Here is how to translate between these:

134

CHAPTER 16. THE GAME LUA-TO-C API 135

x_pos = right

x_neg = left

y_pos = front

y_neg = back

z_pos = up

z_neg = down

That is, the world uses a right-handed coordinate system.
You can convert between side integers and side strings using the functions

string std.side_int_to_str(int side_int)

int std.side_str_to_int(string side_str)

These are defined in the base package in the file “base/Game/std.lua”.
So if a function wants a block side as an integer and we pass it the integer

4, then this represents the positive z direction.
When the user faces one of the six directions, the HUD tells the user which

direction they are facing.
There are 3 axes: x,y, and z. When a function requires an “axis string”, one

of the following strings should be specified: “x”, “y”, “z”.

16.2 The Full Game Lua-to-C API

//---

// Program Level Functions

//---

string ga_command(string command);

void ga_save(bool play_sound);

void ga_load();

void ga_exit();

void ga_exit_with_error();

void ga_print(string line);

void ga_flush();

void ga_console_print(string line);

void ga_dump_lua_env();

void ga_debug_push(string frame);

void ga_debug_pop(string frame);

void ga_debug_line(string line);

//---

CHAPTER 16. THE GAME LUA-TO-C API 136

// Returning Values From a Function

//---

void ga_return_b(string var, bool value);

//---

// Time

//---

float ga_get_game_time();

float ga_get_level_time(int level);

bool ga_get_game_paused();

int ga_get_high_precision_timer();

//---

// Pseudo Random Functions

//---

void ga_srand(int seed);

int ga_rand();

float ga_randf();

float ga_randf_range(float min_f, float max_f);

int ga_randi(int min_i, int max_i);

int ga_chunk_seed(int chunk_id);

int ga_lbp_seed_pos(int chunk_id, int lbp_hash);

int ga_block_seed_pos(int level, BlockPos bp);

//---

// Env Vars : Globals

//---

//Setting if var exists.

bool ga_exists(string var);

//Env var creating 1.

void ga_create_b(string var);

void ga_create_i(string var);

void ga_create_f(string var);

void ga_create_v(string var);

void ga_create_s(string var);

//Env var creating 2.

void ga_init_b(string var, bool value);

void ga_init_i(string var, int value);

CHAPTER 16. THE GAME LUA-TO-C API 137

void ga_init_f(string var, float value);

void ga_init_v(string var, Vector value);

void ga_init_s(string var, string value);

//Env var getting.

bool ga_get_b(string var);

int ga_get_i(string var);

float ga_get_f(string var);

Vector ga_get_v(string var);

string ga_get_s(string var);

//Env var getting helpers.

bool ga_b_exists_and_true(string var);

//Env var setting.

void ga_set_b(string var, bool value);

void ga_set_i(string var, int value);

void ga_set_f(string var, float value);

void ga_set_v(string var, Vector value);

void ga_set_s(string var, string value);

//Additional env var setting.

void ga_toggle_b(string var);

void ga_set_i_by_delta(string var, int delta);

void ga_set_f_by_delta(string var, float delta);

void ga_set_v_by_delta(string var, Vector delta);

//---

// Env Vars : System Vars

//---

//Testing which variables exist.

bool ga_exists_sys_for_get(string var);

bool ga_exists_sys_for_set(string var);

//System var getting.

bool ga_get_sys_b(string var);

int ga_get_sys_i(string var);

float ga_get_sys_f(string var);

Vector ga_get_sys_v(string var);

string ga_get_sys_s(string var);

//System var setting.

void ga_set_sys_b(string var, bool value);

void ga_set_sys_i(string var, int value);

void ga_set_sys_f(string var, float value);

CHAPTER 16. THE GAME LUA-TO-C API 138

void ga_set_sys_v(string var, Vector value);

void ga_set_sys_s(string var, string value);

//---

// Package State Vars

//---

//Functions for the current package.

bool ga_package_var_exists(string var);

void ga_package_init_b(string var, bool value);

void ga_package_init_i(string var, int value);

void ga_package_init_f(string var, float value);

void ga_package_init_v(string var, Vector value);

void ga_package_init_s(string var, string value);

bool ga_package_get_b(string var);

int ga_package_get_i(string var);

float ga_package_get_f(string var);

Vector ga_package_get_v(string var);

string ga_package_get_s(string var);

void ga_package_set_b(string var, bool value);

void ga_package_set_i(string var, int value);

void ga_package_set_f(string var, float value);

void ga_package_set_v(string var, Vector value);

void ga_package_set_s(string var, string value);

void package_var_remove(string var);

//Functions for any package.

bool ga_package2_var_exists(string package, string var);

void ga_package2_init_b(string package, string var, bool value);

void ga_package2_init_i(string package, string var, int value);

void ga_package2_init_f(string package, string var, float value);

void ga_package2_init_v(string package, string var, Vector value);

void ga_package2_init_s(string package, string var, string value);

bool ga_package2_get_b(string package, string var);

int ga_package2_get_i(string package, string var);

float ga_package2_get_f(string package, string var);

Vector ga_package2_get_v(string package, string var);

string ga_package2_get_s(string package, string var);

CHAPTER 16. THE GAME LUA-TO-C API 139

void ga_package2_set_b(string package, string var, bool value);

void ga_package2_set_i(string package, string var, int value);

void ga_package2_set_f(string package, string var, float value);

void ga_package2_set_v(string package, string var, Vector value);

void ga_package2_set_s(string package, string var, string value);

void ga_package2_var_remove(string package, string var);

//---

// Dynamic vars

//---

bool ga_dyn_exists(string var);

void ga_dyn_create_b(string var);

void ga_dyn_create_i(string var);

void ga_dyn_create_f(string var);

void ga_dyn_create_v(string var);

void ga_dyn_create_s(string var);

void ga_dyn_init_b(string var, bool value);

void ga_dyn_init_i(string var, int value);

void ga_dyn_init_f(string var, float value);

void ga_dyn_init_v(string var, Vector value);

void ga_dyn_init_s(string var, string value);

bool ga_dyn_get_b(string var);

int ga_dyn_get_i(string var);

float ga_dyn_get_f(string var);

Vector ga_dyn_get_v(string var);

string ga_dyn_get_s(string var);

bool ga_dyn_b_exists_and_true(string var);

void ga_dyn_set_b(string var, bool value);

void ga_dyn_set_i(string var, int value);

void ga_dyn_set_f(string var, float value);

void ga_dyn_set_v(string var, Vector value);

void ga_dyn_set_s(string var, string value);

void ga_dyn_toggle_b(string var);

void ga_dyn_set_i_by_delta(string var, int delta);

void ga_dyn_set_f_by_delta(string var, float delta);

void ga_dyn_set_v_by_delta(string var, Vector delta);

CHAPTER 16. THE GAME LUA-TO-C API 140

void ga_dyn_remove(string var);

void ga_dyn_node_itr_start(string prefix);

string ga_dyn_node_itr_next();

void ga_dyn_leaf_itr_start(string prefix);

string ga_dyn_leaf_itr_next();

void ga_dyn_dump();

//---

// Textures

//---

void ga_tex_keep_alive(string tex_name);

//---

// Sounds

//---

string ga_sound_name_to_fn(string sound);

LIST ga_get_sound_names_with_prefix(string prefix);

void ga_play_sound(string sound);

void ga_play_sound_menu(string sound);

void ga_play_music(string sound);

void ga_stop_music();

string ga_get_current_music_fn();

void ga_play_playlist(string playlist);

bool ga_playlist_exists(string playlist);

//---

// Input Binds

//---

void ga_enable_non_escape_binds(bool value);

string ga_what_binds_to_action(string action);

//---

// Meshes

//---

float ga_mesh_get_radius(string name);

float ga_mesh_get_inv_radius(string name);

CHAPTER 16. THE GAME LUA-TO-C API 141

//---

// Game Related

//---

string ga_get_package_name();

bool ga_is_cheating_enabled();

bool ga_get_hardcore_mode();

void ga_set_hardcore_mode(bool value);

//System game stuff.

bool ga_genesis();

//Life and death (game stuff).

bool ga_kill_player();

//---

// Use and Look Objects

//---

bool ga_use_object_exists();

string ga_use_object_get_type();

bool ga_look_object_bent_exists();

int ga_look_object_bent_get_chunk_id();

LocalBlockPos ga_look_object_bent_get_lbp();

bool ga_look_object_ment_exists();

int ga_look_object_ment_inst_id();

bool ga_look_object_block_exists();

int ga_look_object_block_get_chunk_id();

LocalBlockPos ga_look_object_block_get_lbp();

int ga_look_object_block_get_normal_side();

//---

// System hud Related

//---

void ga_hud_msg(string msg, float duration);

void ga_hud_reg_damage_from_dir(int damage, Vector dir);

void ga_hud_reg_damage_from_dir_color(int damage, Vector dir, Vector color);

void ga_hud_reg_dir_tex(string name, string tex, Vector dir, float duration);

CHAPTER 16. THE GAME LUA-TO-C API 142

//---

// Moving The Player Through Chunk Tree

//---

void ga_shrink();

void ga_shrink2(Vector lp);

void ga_grow();

void ga_grow2(Vector lp);

void ga_tele(string path, Vector offset);

void ga_tele_pink();

bool ga_tele_pink2(Vector lp);

void ga_tele_blue();

void ga_tele_blue2(Vector lp);

void ga_tele_same_level(Vector lp);

//---

// Exploration

//---

int ga_get_fertile_radius(int level_delta);

void ga_set_fertile_radius(int level_delta, int radius);

int ga_get_level_radius(int level_delta);

void ga_set_level_radius(int level_delta, int radius);

//---

// Windows (Part 1)

//---

//Window related.

void ga_window_push(string win_name);

void ga_window_pop();

void ga_window_pop_all();

void ga_main_menu_push(string win_name);

void ga_main_menu_pop();

void ga_main_menu_pop_all(bool return_to_game);

void ga_hud_window_add(string win_name, int priority);

void ga_hud_window_remove(string win_name);

//---

// Viewer queries

//---

//Viewer queries.

int ga_get_viewer_chunk_id();

CHAPTER 16. THE GAME LUA-TO-C API 143

int ga_get_viewer_ancestor_chunk_id(int level);

string ga_get_viewer_chunk_bt();

int ga_get_viewer_level();

Vector ga_get_viewer_offset();

Vector ga_get_viewer_lp(int level);

BlockPos ga_get_viewer_bp(int level);

string ga_get_viewer_path();

string ga_get_viewer_path_ext();

Vector ga_get_vec_to_viewer(int level, Vector lp);

float ga_lbp_dist_to_viewer(int chunk_id, int lbp_hash);

float ga_block_dist_to_viewer(int level, BlockPos bp);

//Cached ment variables.

Vector ga_ment_get_var_special_vec_to_viewer(int inst_id);

float ga_ment_get_var_special_dist_to_viewer(int inst_id);

//---

// Basic entities

//---

string ga_bent_get_type(int level, BlockPos bp);

void ga_bent_add(int level, BlockPos bp, string type, float rl);

void ga_bent_add_i(int level, BlockPos bp, string type, int param, float rl);

void ga_bent_add_s(int level, BlockPos bp, string type, string param, float rl);

void ga_bent_set_param_i(int level, BlockPos bp, int value, float rl);

void ga_bent_set_param_s(int level, BlockPos bp, string value, float rl);

int ga_bent_get_param_i(int level, BlockPos bp);

string ga_bent_get_param_s(int level, BlockPos bp);

void ga_bent_remove_temp(int level, BlockPos bp, int num_sec);

void ga_bent_remove_perm(int level, BlockPos bp);

LIST ga_bent_sphere_query(int level, Vector lp, float radius);

CLASS ga_search_for_bent_in_chunk(int chunk_id, string bent_type);

//---

// Moving entities (type)

//---

bool ga_ment_type_var_exists(string type, string var);

bool ga_ment_get_static_b(string type, string var);

int ga_ment_get_static_i(string type, string var);

float ga_ment_get_static_f(string type, string var);

CHAPTER 16. THE GAME LUA-TO-C API 144

Vector ga_ment_get_static_v(string type, string var);

string ga_ment_get_static_s(string type, string var);

bool ga_ment_static_b_exists_and_true(string type, string var);

//---

// Moving entities (instance)

//---

void ga_ment_start(int level, Vector lp, string type);

void ga_ment_end();

void ga_ment_init_set_b(string key, bool value);

void ga_ment_init_set_i(string key, int value);

void ga_ment_init_set_f(string key, float value);

void ga_ment_init_set_v(string key, Vector value);

void ga_ment_init_set_s(string key, string value);

bool ga_ment_var_exists(int inst_id, string var);

bool ga_ment_b_exists_and_true(int inst_id, string var);

bool ga_ment_get_b(int inst_id, string var);

int ga_ment_get_i(int inst_id, string var);

float ga_ment_get_f(int inst_id, string var);

Vector ga_ment_get_v(int inst_id, string var);

string ga_ment_get_s(int inst_id, string var);

void ga_ment_set_var_rt_only(int inst_id, string var, float rl);

void ga_ment_set_b(int inst_id, string var, bool value);

void ga_ment_set_i(int inst_id, string var, int value);

void ga_ment_set_f(int inst_id, string var, float value);

void ga_ment_set_v(int inst_id, string var, Vector value);

void ga_ment_set_s(int inst_id, string var, string value);

void ga_ment_toggle_b(int inst_id, string var);

void ga_ment_set_i_by_delta(int inst_id, string var, int delta);

void ga_ment_set_f_by_delta(int inst_id, string var, float delta);

void ga_ment_set_v_by_delta(int inst_id, string var, Vector delta);

int ga_ment_inst_id_to_code_id(int inst_id);

int ga_ment_code_id_to_inst_id(int code_id);

bool ga_ment_exists(int inst_id);

void ga_ment_remove(int inst_id);

string ga_ment_get_type(int inst_id);

Vector ga_ment_get_lp(int inst_id);

CHAPTER 16. THE GAME LUA-TO-C API 145

Vector ga_ment_get_sllp(int inst_id);

int ga_ment_get_level(int inst_id);

int ga_ment_get_chunk_id(int inst_id);

float ga_ment_get_radius(int inst_id);

void ga_ment_dump(int inst_id);

LIST ga_ment_sphere_query(

int level, int min_level, int max_level,

Vector lp, float radius);

void ga_ment_set_alarm(

int inst_id, float alarm_game_time, string alarm_name);

void ga_ment_set_alarm_on_level(

int inst_id, int level, float alarm_level_time, string alarm_name);

void ga_ment_all_dump();

//---

// Particles

//---

void ga_particle_add(CLASS args);

void ga_particle_explosion(CLASS args);

void ga_particle_trail(CLASS args);

void ga_particle_ring(CLASS args);

//---

// Blocks (type)

//---

bool ga_bt_exists(string bt);

bool ga_bt_var_exists(string bt, string var);

bool ga_bt_get_physically_solid(string bt);

LIST ga_get_block_names_with_prefix(string prefix);

//---

// Blocks (instance)

//---

//Blocks.

string ga_block_get(int level, BlockPos bp);

string ga_get_cocoon_block_of_chunk(int level, BlockPos vcp);

void ga_block_change_rl(

int level, BlockPos bp, string new_bt, float rl);

CHAPTER 16. THE GAME LUA-TO-C API 146

void ga_block_change_rl_default(

int level, BlockPos bp, string new_bt);

void ga_block_change_perm(

int level, BlockPos bp, string new_bt);

bool ga_block_var_exists(int level, BlockPos bp, string var);

bool ga_block_get_b(int level, BlockPos bp, string var);

int ga_block_get_i(int level, BlockPos bp, string var);

float ga_block_get_f(int level, BlockPos bp, string var);

Vector ga_block_get_v(int level, BlockPos bp, string var);

string ga_block_get_s(int level, BlockPos bp, string var);

bool ga_block_b_exists_and_true(int level, BlockPos bp, string var);

void ga_block_set_b(int level, BlockPos bp, string var, bool value);

void ga_block_set_i(int level, BlockPos bp, string var, int value);

void ga_block_set_f(int level, BlockPos bp, string var, float value);

void ga_block_set_v(int level, BlockPos bp, string var, Vector value);

void ga_block_set_s(int level, BlockPos bp, string var, string value);

void ga_block_toggle_b(int level, BlockPos bp, string var);

void ga_block_set_i_by_delta(int level, BlockPos bp, string var, int delta);

void ga_block_set_f_by_delta(int level, BlockPos bp, string var, float delta);

void ga_block_set_v_by_delta(int level, BlockPos bp, string var, Vector delta);

string ga_get_most_common_bt_in_chunk(int chunk_id);

CLASS ga_search_for_bt_in_chunk(int chunk_id, string bt);

CLASS ga_search_for_bt_in_chunk_random(int chunk_id, string bt);

//---

// Respawn Point and Waypoints

//---

string ga_get_respawn_path();

void ga_set_respawn_point(string path, BlockPos lbp);

void ga_add_waypoint_sloppy(string path, string name_override);

void ga_add_waypoint_sloppy_in_only(string path, string name_override);

//---

// Coordinates: Blocks and Chunks

//---

int ga_chunk_id_to_level(int chunk_id);

BlockPos ga_chunk_id_to_vcp(int chunk_id);

CHAPTER 16. THE GAME LUA-TO-C API 147

string ga_chunk_id_to_path(int chunk_id);

int ga_vcp_to_chunk_id(int level, BlockPos vcp);

int ga_path_to_chunk_id(string path);

BlockPos ga_chunk_id_and_lbp_to_bp(int chunk_id, BlockPos lbp);

BlockPos ga_lbp_to_bp(BlockPos vcp, BlockPos lbp);

BlockPos ga_vcp_to_bp(int level, BlockPos vcp);

BlockPos ga_bp_to_vcp(int level, BlockPos bp);

int ga_chunk_id_to_parent_chunk_id(int chunk_id);

BlockPos ga_bp_to_parent_bp(int level, BlockPos bp);

BlockPos ga_bp_to_parent_vcp(BlockPos bp);

int ga_bp_to_parent_chunk_id(int level, BlockPos bp);

string ga_bp_to_path(int level, BlockPos bp);

BlockPos ga_bp_to_lbp(BlockPos bp);

//See base/Game/std.lua for

//lbp_to_bp, bp_to_vcp, bp_to_lbp, local_to_level_pos,

//level_to_local_pos, lp_to_vcp, lp_to_offset, bp, block_center,

//lbph_to_lbp, lbp_to_lbph, lp_to_bp, etc.

//---

// Coordinates: Vectors

//---

Vector ga_chunk_id_and_offset_to_lp(int chunk_id, Vector offset);

Vector ga_offset_to_lp(BlockPos vcp, Vector offset);

CLASS ga_level_scale_factor(int source_level, int target_level);

CLASS ga_convert_lp(

int source_level, int target_level, Vector source_lp);

CLASS ga_finest_chunk_containing_point(int level, Vector lp);

//---

// Math

//---

//Math.

//Much of this is in "base/Game/std.lua".

CLASS ga_path_diff(string path1, string path2);

//---

CHAPTER 16. THE GAME LUA-TO-C API 148

// Movement and Physics

//---

void ga_camera_set_look(Vector look, Vector up);

void ga_move_set_desired_travel(Vector travel);

void ga_move_set_spin(float spin);

bool ga_move_get_on_sure_footing();

void ga_move_set_ledge_guards(bool on);

void ga_move_set_body_spirit();

bool ga_move_set_body_ground(

Vector trans, float radius, float bot_to_eye, float eye_to_top);

bool ga_move_set_body_fly(

Vector trans, float radius, bool use_true_up);

void ga_player_model_set_look();

void ga_player_model_q2md2_set_cmd(string cmd);

void ga_player_model_q2md2_set_state(string state);

//---

// Visibility

//---

bool ga_vis_test_level(int level, Vector lp_start, Vector lp_end);

//---

// Rendering

//---

void ga_render_push_matrix();

void ga_render_pop_matrix();

void ga_render_matrix_load_identity();

void ga_render_matrix_row_major(

float m11, float m12, float m13, float m14,

float m21, float m22, float m23, float m24,

float m31, float m32, float m33, float m34,

float m41, float m42, float m43, float m44);

void ga_render_matrix_translated(float trans_x, float trans_y, float trans_z);

void ga_render_matrix_scaled(float scale_x, float scale_y, float scale_z);

void ga_render_matrix_rotated(

float angle,

Vector axis);

void ga_render_matrix_frame(

Vector look,

Vector up,

Vector left);

void ga_render_matrix_frame_from_ment(int inst_id);

CHAPTER 16. THE GAME LUA-TO-C API 149

void ga_render_ment_typical(int inst_id);

void ga_render_mesh(string mesh_name);

void ga_render_mesh_with_tex(

string mesh_name,

string tex_name);

void ga_render_line(

Vector v1,

Vector v2);

void ga_render_line_thick(

Vector v1,

Vector v2,

float thickness);

void ga_render_color(

Vector color);

void ga_render_clear_depth_buffer();

//---

// Window (Part 2)

//---

//These are described in another chapter.

//These are in addition to the previous "windows" functions.

//---

// Rebooting the Game

//---

string ga_reboot_dyn_itr_get();

void ga_reboot_dyn_itr_next();

bool ga_reboot_dyn_itr_at_end();

void ga_reboot_dyn_itr_save();

//--

// File IO

//--

int ga_open_file_for_writing(string & file_name);

void ga_write(int handle, string str);

void ga_close_file(int handle);

//--

// Accessibility

//--

bool ga_get_is_colorblind();

Vector ga_get_colorblind_closest(Vector color);

CHAPTER 16. THE GAME LUA-TO-C API 150

Vector ga_get_colorblind_bynum(int num);

void ga_set_colorblind_bynum(int num, Vector color);

//--

// Text and Strings

//--

Vector ga_color_code_to_vec(string code);

string ga_color_vec_to_code(Vector color);

string ga_txt_strip_esc_seq(string input);

//---

// Windows Clipboard

//---

void ga_copy_to_clipboard(string str);

string ga_paste_from_clipboard();

We will now describe all of these functions.

16.3 Game API: Program Level Functions

string ga_command(string command);

void ga_save(bool play_sound);

void ga_load();

void ga_exit();

void ga_exit_with_error();

void ga_print(string line);

void ga_flush();

void ga_console_print(string line);

void ga_dump_lua_env();

The engine has a console in which the user can enter commands. The func-
tion ga command causes the specified command to be executed. This should not
be used for typical game play functions. It returns the result of the command
converted to a string. For example, the following is how you can get what is
bound to the W key:

local str = ga_command("bind W.downup get")

The function ga_save saves the game. You specify whether the “saving
game sound” is played.

CHAPTER 16. THE GAME LUA-TO-C API 151

The function ga_load loads the game. That is, each player has exactly one
saved game slot. The load function will load that saved game.

The function ga_exit exists the program (without saving).
The function ga_exit_with_error is just like ga_exit, except it prints that

there was an error and dumps the “debug stack.” Note that this command exits
the program without saving.

Note that some of these functions work by making a request which is fulfilled
later.

The function ga_print prints the given string to the stdout.txt file as a
line. No newline character is required. The ga_print function works by writing
to a buffer. The function ga_flush flushes this buffer. Note that exiting the
program via ga_exit will flush the buffer also.

The user can open the console by pressing the tilde key. This console displays
a list of lines, including commands that the user entered into the console as well
as output from commands. The function ga_console_print adds the given
string to the console as a line (no newline character is required).

16.3.1 Pushing and popping the debug stack

void ga_debug_push(string frame);

void ga_debug_pop(string frame);

The program uses its own internal debug stack. This stack is printed to the
file stdout.txt if the program exits due to an error. You can push and pop to
the stack via these functions.

The string at the top of the stack must be the string that you are passing
to the pop function, otherwise the program will exit.

You can use these functions to figure out where the program is crashing if it
is crashing while executing your Lua code. Here is an example:

function p.top_function()

ga_debug_push("top")

--Do some stuff.

p.bad_function()

--Do more stuff.

ga_debug_pop("top")

end

function p.bad_function()

ga_debug_push("i_am_worried_about_this")

local gold = ga_get_i("golddddddd")

ga_debug_pop("i_am_worried_about_this")

end

When the program runs, it will crash because there is no variable called
golddddddd. When you open the stdout.txt file, you will see that the top of
the debug stack is i_am_worried_about_this.

CHAPTER 16. THE GAME LUA-TO-C API 152

void ga_debug_line(string line);

You can also call the function ga_debug_line to print information between
the push and pop, assuming the program crashes. Here is an example:

function p.function 1()

ga_debug_push("function_1")

p.good_function()

ga_debug_line("checkpoint 1A")

p.happy_function()

ga_debug_line("checkpoint 1B")

p.function_2()

ga_debug_line("checkpoint 1C")

p.funny_function()

ga_debug_pop("function_1")

end

function p.function_2()

ga_debug_push("function_2")

p.function_that_will_crash()

ga_debug_pop("function_2")

end

When we call function_1, the program will ultimately crash. In the std-
out.txt file, it will show the debug stack. The last frame on the stack will be
function_2. The previous frame will be function_1, and it will show that the
program got to checkpoint 1A and 1B, but not 1C.

16.4 Game API: Returning Values From a Func-
tion

void ga_return_b(string var, bool value);

Normally when the C++ part of the program calls a Lua function, the Lua
function can return some value that the C++ part of the program can process.
However sometimes several values are needed to be returned.

The function ga_return_b serves to return an extra bool value. This func-
tion specifies the name of the variable and its value. This should be called before
the actual return statement of the Lua function.

This can be used, for example, by the on_ment_hit function of a moving
entity script.

16.5 Game API: Time

float ga_get_game_time();

float ga_get_level_time(int level);

CHAPTER 16. THE GAME LUA-TO-C API 153

There are two types of time in the game: game time and level time. The
game time starts at 0.0 when the player starts a new game. The game time
records the number of seconds that have passed since the start of the game.
However there is an exception: there are places in the game where the player
can “sleep”. This will advance the game time. In this way the player can easily
sleep for an hour causing many entities to respawn.

The other kind of time is “level time”. Each level (level 0, level 1, etc) has
its own time system. On the level containing the player, the level time advances
at the normal rate. However levels that are coarser than the player have their
time advanced at a slower rate. For example, if the player is on level L, then
time on level L-1 advances at 1/16 the speed as normal. The time on level L-2
advances at (1/256) the speed as normal.

If the player is on level L but moves to level L-1, then level L is destroyed.
Then if the player shrinks from level L-1 back into level L, then the time of level
L will reset at “0.0”.

bool ga_get_game_paused();

The function ga_get_game_paused returns whether or not the game is paused.
For example, when the player opens the console, the game is paused.

For debugging you can use the Windows high precision timer:

int ga_get_high_precision_timer();

That function returns the result the Windows API function QueryPerfor-
manceCounter.

16.6 Game API: Pseudo Random Functions

16.6.1 Core random functions

void ga_srand(int seed);

int ga_rand();

float ga_randf();

float ga_randf_range(float min_f, float max_f);

int ga_randi(int min_i, int max_i);

Note:

FBW_RAND_MAX = 32767

The function ga_srand sets the pseudo random number generator seed.
The function ga_rand pseudo randomly generates an integer (using the

pseudo random seed) where the integer is between 0 and FBW_RAND_MAX-1 in-
clusive. Each subsequent call to ga_rand will generate a new number. The
caller should try to avoid using this function and should instead use ga_randf,
ga_randf_range, and ga_randi.

CHAPTER 16. THE GAME LUA-TO-C API 154

The function ga_randf pseudo randomly generates a floating point number
in the range [0.0, 1.0].

The function ga_randf_range generates a pseudo random float in the given
range. The function ga_randi generates a pseudo random integer in the given
range (and the range is inclusive, so that largest integer that can be generated
is max i).

16.6.2 Seeds associated to chunks

int ga_chunk_seed(int chunk_id);

This function gets a seed (for pseudo random number generation) that is
determined by the path of the given chunk.

int ga_lbp_seed_pos(int chunk_id, int lbp_hash);

This function gets a seed (for pseudo random number generation) that is
determined by the given block position. The block is given by the chunk (the
chunk id) and the local block position hash code of the position within the
chunk.

int ga_block_seed_pos(int level, BlockPos bp);

The function ga_block_seed_pos is like ga_lbp_seed_pos, except it takes
the level and the block position to determine the seed. That is, it will call the
function ga_lbp_seed_pos appropriately. However the chunk containing the
block must exist.

16.7 Game API: Env Vars: Globals

The engine has a “variable store” (an “environment”). This holds variables with
one of several types: bool, int, float, Vector, and string. A vector is a class with
three float members: x, y, and z. A package’s Lua scripts are only able to access
two types of environment variables: 1) “global variables”, and 2) a select few
other variables which we call “system variables”. The function ga get i gets the
value of a global environment variable whose type is an integer, and ga get sys i
gets the value of a system environment variable whose type is an integer. Global
variables must be declared in the file globals.txt in the package’s top directory.
You can read about this in Section 18.3.

16.7.1 Getting env globals

bool ga_exists(string var);

Use this ga exists functions to determine if the given global variable exists.
Note that if there is an (integer) global variable called “num rockets”, then

CHAPTER 16. THE GAME LUA-TO-C API 155

the call to ga exists(“num rockets”) will return true. Note that the variable
num rockets actually corresponds to the environment variable with the full name

“game.globals.num rockets”.

If you open up the game’s console and type the command

“ls game.globals.num rockets”

it will tell you the value of the variable. However to get the value of this variable
from a Lua script, you would use the command

ga get i(“num rockets”)

as we will describe later.
We recommend prefixing all your global variables with a short string indi-

cating the name of your package. For example if your package is called “Tree-
Cutter”, then it would be better to have the global variable “tc.num rockets”
instead of just “num rockets”.

void ga_create_b(string var);

void ga_create_i(string var);

void ga_create_f(string var);

void ga_create_v(string var);

void ga_create_s(string var);

You can use these to create global variables. If the global variable already
exists, then nothing will happen. If the variable does NOT exist (in particular,
it is not listed in globals.txt), then it will be created (and initialized to a default
value) for use by the game. However it will not be saved when the game is
saved. Thus, these ga create XXX functions should be used for the creation of
temporary variables only.

void ga_init_b(string var, bool value);

void ga_init_i(string var, int value);

void ga_init_f(string var, float value);

void ga_init_v(string var, Vector value);

void ga_init_s(string var, string value);

These are very similar to the ga create XXX functions. Both the ga create XXX
and ga init XXX functions will do nothing if the (global) variable already exists.
However if the variable does NOT exist, then the ga init XXX function will set
the varaible to the given value (as opposed to the ga create XXX function which
sets it to a default value).

bool ga_get_b(string var);

int ga_get_i(string var);

float ga_get_f(string var);

Vector ga_get_v(string var);

string ga_get_s(string var);

CHAPTER 16. THE GAME LUA-TO-C API 156

Use these ga get XXX functions to get the value of a global environment
variable. If the variable does not exist, the program will exit. If the type of the
variable is wrong, then the program will exit.

bool ga_b_exists_and_true(string var);

The ga_b_exists_and_true function returns true if and only if the (bool)
variable exists AND is true. If the variable exists but is not a bool, the program
will exit.

16.7.2 Setting env globals

void ga_set_b(string var, bool value);

void ga_set_i(string var, int value);

void ga_set_f(string var, float value);

void ga_set_v(string var, Vector value);

void ga_set_s(string var, string value);

Use these ga set XXX functions to set the value of a global environment
variable. If the variable does not exist, the program will exit. If the type of the
variable is wrong, then the program will exit.

void ga_toggle_b(string var);

void ga_set_i_by_delta(string var, int delta);

void ga_set_f_by_delta(string var, float delta);

void ga_set_v_by_delta(string var, Vector delta);

The function ga_toggle_b will toggle the value of the specified bool. The
“set by delta” functions will replace the value of the variable with its variable
plus delta. If the variable does not exist, the program will exit.

16.8 Game API: Env Vars: System Vars

bool ga_exists_sys_for_get(string var);

bool ga_exists_sys_for_set(string var);

bool ga_get_sys_b(string var);

int ga_get_sys_i(string var);

float ga_get_sys_f(string var);

Vector ga_get_sys_v(string var);

string ga_get_sys_s(string var);

void ga_set_sys_b(string var, bool value);

void ga_set_sys_i(string var, int value);

void ga_set_sys_f(string var, float value);

void ga_set_sys_v(string var, Vector value);

void ga_set_sys_s(string var, string value);

CHAPTER 16. THE GAME LUA-TO-C API 157

Use these functions ga_get_sys_XXX and ga_set_sys_XXX functions for get-
ting and setting “system” environment variables.

Some system variables are read only. Others you can read and write to.
You can use the function ga_exists_sys_for_get to see if you can read from
a system variable, and you can use ga_exists_sys_for_set to see if you can
write to it.

To get a list of all system variables you can access (and whether or not they
are read only), open up the console in the game and run the command gendoc.
This will generate the file

Output/Documentation/system_vars.txt

For example, one line in this file is

game.player.camera.look (READ ONLY)

in the section listing vector variables. So you can write the following Lua
code:

local look_vector = ga_get_sys_v("game.player.camera.look")

The reason why not all environment variables are exposed as system variables
is because we do not want packages to depend on parts of the engine that are
volatile. We want to avoid packages becoming broken if variable names change.

16.9 Game API: Package State Vars

Recall that the program has variables in what is called the “environment”. Some
of these environment variables can be accessed as “system variables”. Others of
these environment are called “global vars”, which can be accessed by the current
package. For example, if the package has a global variable called game.total,
then this is saved as

game.globals.gold.total

in the environment.
When the player saves their game, all their global vars will be saved in the

save folder for the player.
On the other hand, package state variables are variables not associated

to a player but instead are associated to the package itself. So if the user has
two players that are both for the xar package, if one of the player sets a package
state variable, the other player will see that new value.

You would want to use package variables for “user preferences”, not “player
attributes”. For example, if you allow the player to choose whether or not they
move with 6 degrees of freedom, this would be a good candiate for a package
variable. For another example, the format for the HUD would be a good package
variable.

CHAPTER 16. THE GAME LUA-TO-C API 158

You can only interact with a subset of package variables. In the following
functions, var is appended to a prefix to get a longer varible name. For example,
if var = “gold.total”, then the full var would be

package.state.globals.gold.total

in the environment. Here are the functions for package variables for the current
package:

bool ga_package_var_exists(string var);

void ga_package_init_b(string var, bool value);

void ga_package_init_i(string var, int value);

void ga_package_init_f(string var, float value);

void ga_package_init_v(string var, Vector value);

void ga_package_init_s(string var, string value);

bool ga_package_get_b(string var);

int ga_package_get_i(string var);

float ga_package_get_f(string var);

Vector ga_package_get_v(string var);

string ga_package_get_s(string var);

void ga_package_set_b(string var, bool value);

void ga_package_set_i(string var, int value);

void ga_package_set_f(string var, float value);

void ga_package_set_v(string var, Vector value);

void ga_package_set_s(string var, string value);

void package_var_remove(string var);

The behavior of these functions is analogous to that of the env var functions
in Section 16.8.

It is also possible to change package state varibles not just for the current
package, but for any package. You can do this via the following functions:

bool ga_package2_var_exists(string package, string var);

void ga_package2_init_b(string package, string var, bool value);

void ga_package2_init_i(string package, string var, int value);

void ga_package2_init_f(string package, string var, float value);

void ga_package2_init_v(string package, string var, Vector value);

void ga_package2_init_s(string package, string var, string value);

bool ga_package2_get_b(string package, string var);

int ga_package2_get_i(string package, string var);

float ga_package2_get_f(string package, string var);

CHAPTER 16. THE GAME LUA-TO-C API 159

Vector ga_package2_get_v(string package, string var);

string ga_package2_get_s(string package, string var);

void ga_package2_set_b(string package, string var, bool value);

void ga_package2_set_i(string package, string var, int value);

void ga_package2_set_f(string package, string var, float value);

void ga_package2_set_v(string package, string var, Vector value);

void ga_package2_set_s(string package, string var, string value);

void ga_package2_var_remove(string package, string var);

16.10 Game API: Dynamic Vars

Dynamic variables are similar to global variables, but there are some key differ-
ences. Dynamic variables can be created and destroyed at any time, and they
do not need to be listed ahead of time in any file. They are stored in a file
called dyn vars.txt (in the player’s save folder). Note that dynamic variables
are not automatically saved when the player reboots the game. They must be
saved manually (see the functions ga reboot dyn XXX).

all dynamic variable names must start with “dyn.”

16.10.1 Testing if a dynamic variable exists

bool ga_dyn_exists(string var);

Use the function above to determine if a dynamic variable exists.

16.10.2 Creating dynamic variables

void ga_dyn_create_b(string var);

void ga_dyn_create_i(string var);

void ga_dyn_create_f(string var);

void ga_dyn_create_v(string var);

void ga_dyn_create_s(string var);

These functions will create the variable if it does not exist. It will also set
the var to an initial value, regardless of whether or not the var already exists.

void ga_dyn_init_b(string var, bool value);

void ga_dyn_init_i(string var, int value);

void ga_dyn_init_f(string var, float value);

void ga_dyn_init_v(string var, Vector value);

void ga_dyn_init_s(string var, string value);

These functions do nothing if the variable already exists. If the variable does
not exist, it is set to the specified value.

CHAPTER 16. THE GAME LUA-TO-C API 160

16.10.3 Getting dynamic variables

bool ga_dyn_get_b(string var);

int ga_dyn_get_i(string var);

float ga_dyn_get_f(string var);

Vector ga_dyn_get_v(string var);

string ga_dyn_get_s(string var);

bool ga_dyn_b_exists_and_true(string var);

These functions get the value of a dynamic variable. The function

ga_dyn_b_exists_and_true

returns true if and only if the variable exists AND is true. If the variable exists
but is not a bool, the program will exit.

16.10.4 Setting dynamic variables

void ga_dyn_set_b(string var, bool value);

void ga_dyn_set_i(string var, int value);

void ga_dyn_set_f(string var, float value);

void ga_dyn_set_v(string var, Vector value);

void ga_dyn_set_s(string var, string value);

The functions above set the value of a dynamic variable. The variable must
already exist.

void ga_dyn_toggle_b(string var);

void ga_dyn_set_i_by_delta(string var, int delta);

void ga_dyn_set_f_by_delta(string var, float delta);

void ga_dyn_set_v_by_delta(string var, Vector delta);

The functions above are analogous to the functions for global variables (see
ga_toggle_b and ga_set_i_by_delta).

16.10.5 Removing dynamic variables

void ga_dyn_remove(string var);

This function removes a dynamic variable.

16.10.6 Iterating over dynamic variables

void ga_dyn_node_itr_start(string prefix);

string ga_dyn_node_itr_next();

void ga_dyn_leaf_itr_start(string prefix);

string ga_dyn_leaf_itr_next();

CHAPTER 16. THE GAME LUA-TO-C API 161

These variables are for iterating over leaf nodes and non-leaf nodes of dy-
namic variables. It is best if we show an example:

ga_dyn_init_s("dyn.a.b.c", "apple")

ga_dyn_init_s("dyn.a.b.c.d", "orange")

ga_dyn_init_s("dyn.a.b.c.e", "peach")

ga_dyn_init_s("dyn.a.b.f", "pear")

ga_dyn_init_s("dyn.a.b.g.h", "lemon")

--

ga_console_print("Internal nodes of dyn.a.b:")

ga_dyn_node_itr_start("dyn.a.b")

while(true) do

local name = ga_dyn_node_itr_next()

if name == "" then break end

ga_console_print(name)

end

--

ga_console_print("Leaf nodes of dyn.a.b:")

ga_dyn_leaf_itr_start("dyn.a.b")

while(true) do

local name = ga_dyn_leaf_itr_next()

if name == "" then break end

ga_console_print(name)

end

When the code above is run, it will print the following:

Internal nodes of dyn.a.b:

g

c

Leaf nodes of dyn.a.b:

f

c

This, dyn.a.b leads to the internal nodes g and c, and dyn.a.b leads to the
leaf nodes f and c. So c is both an internal and a leaf node of “dyn.a.b”. The
result need not be in alphabetical order.

16.10.7 Dumping dynamic variables

Finally,

ga_dyn_dump()

is used for debugging the dynamic variable system.

CHAPTER 16. THE GAME LUA-TO-C API 162

16.11 Game API: Textures

void ga_tex_keep_alive(string tex_name);

If a texture is not used for a long time (perhaps a minute, but this can be
configured by the user), the texture is unloaded. This keep alive function will
(make a request to) load the texture if it has not yet been loaded. If it has been
loaded, it will simulate that the texture has just been used. So by calling this
function periodically, you can insure that the texture does not get unloaded.

If the game attempts to use a texture that has not yet been loaded, it may
appear black for a few frames.

16.12 Game API: Sounds

string ga_sound_name_to_fn(string sound);

LIST ga_get_sound_names_with_prefix(string prefix);

void ga_play_sound(string sound);

void ga_play_sound_menu(string sound);

void ga_play_music(string sound);

void ga_stop_music();

string ga_get_current_music_fn();

void ga_play_playlist(string playlist);

bool ga_playlist_exists(string playlist);

There are tree types of sounds for the program: 1) game sounds, 2) menu
sounds, and 3) music. Game sounds are paused when the player opens a menu
(including the main menu). Menu sounds are not paused (menu sounds are
designed to be used while inside a menu). Music is similar to menu sounds in
that it is also played while the user is in a menu. The difference is that only
one music sound can be playing. Music sounds can be several minutes long, but
game and menu sounds should be relatively short.

Once a game or menu sound is played it cannot be stopped. Music, on the
other hand, can be stopped at any time.

The sound name string that is specified should be listed in

“Sounds/sound names.txt”.

The function ga_sound_name_to_fn converts the given sound name to the
filename of the sound. The function ga_get_sound_names_with_prefix lists
all sound names that start with the given string prefix.

The function ga_get_current_music_fn gets the current filename of the
music song that is playing.

The function ga_play_playlist plays the specified playlist. See the game’s
website for how the playlist system works exactly. That is, follow this link

CHAPTER 16. THE GAME LUA-TO-C API 163

http://danthemanhathaway.com/ComputerGames/FractalBlockWorld/ReleaseMisc/Packages

and look for the music guide. Basically every folder in the Music directory
of the package is a playlist. The top Music directory itself is not a playlist, and
instead the “top level” playlist should have its songs be placed in the folder
“Music/default”. Playlist folders can be nested. That is, we could have the
following playlists:

Data/Packages/xar/Music/default

Data/Packages/xar/Music/ying_world

Data/Packages/xar/Music/ying_world/small_yellow_flower

If ga_play_playlist("small_yellow_flower") is called, the engine will try
to play music from the small yellow flower playlist. However if that folder is
empty, ift will try the ying world folder. If that is empty, it will try the default
folder.

The function ga_playlist_exists returns whether the given playlist folder
can be found, not whether or not it is empty.

16.13 Game API: Input Binds

void ga_enable_non_escape_binds(bool value);

string ga_what_binds_to_action(string action);

By default, non-escape binds are enabled. The function

ga_enable_non_escape_binds

specifies whether non-escape binds are enabled. When they are disabled, only
the binds for opening the main menu and the console are executed. You might
want to disable non-escape binds if you have a HUD window which when open
processes all input. Note that on the other hand, when a game window or main
menu window is open, then binds are not executed.

In terms of geting information about input binds, we recommend using
ga_command in combination with the command bind. For example, this is how
you can get a semicolon separated list of all actions which bind to a particular
action:

local inputs_str = ga_command("bind get_inputs PACKAGE_MOVE_FORWARD")

ga_print(inputs_str)

That code will print “W.downup” (without quotes) in the default config-
uration of the xar package. However, we understand that the typical case is
that only one action binds to an input event, which is a keyboard key, and
we want to strip the “.downup” part. For this, you can use the function
ga_what_binds_to_action:

CHAPTER 16. THE GAME LUA-TO-C API 164

local key_str = ga_what_binds_to_action("PACKAGE_MOVE_FORWARD")

ga_print(key_str)

In the same situation as the previous example, the last example will print
“W” (without quotes). If the action string is not found, the function will return
“ERROR” (without quotes). If the action exists but no input event binds to it,
the function will return the empty string. If more than one input event binds
to the action, it will just return the first one.

16.14 Game API: Meshes

float ga_mesh_get_radius(string name);

float ga_mesh_get_inv_radius(string name);

Recall that mesh names are associated to mesh files and textures in

Meshes/mesh_names.txt.

The “radius” of a mesh is the largest distance of any vertex in the mesh from
the origin (of the mesh).

The function ga_mesh_get_radius returns the radius of the specified mesh.
The function ga_mesh_get_inv_radius returns 1.0 divided by this radius.

This is provided because it might be slightly faster because these values are
cached.

16.15 Game API: Game Related

16.15.1 ga ga get package name

string ga_get_package_name();

This returns the name of the current package. For example if the player is
using the Data/Packages/xar package, this function will return “xar”.

16.15.2 ga ga is cheating enabled

bool ga_is_cheating_enabled();

The function ga_is_cheating_enabled returns whether or not cheating is
enabled.

16.15.3 Hardcore mode

bool ga_get_hardcore_mode();

void ga_set_hardcore_mode(bool value);

CHAPTER 16. THE GAME LUA-TO-C API 165

Every player has a hardcore bool. If this bool is true, then if they try to
exit the game or load a game, it will forcibly save the game. Also, on hardcore
mode the respawn command will not respawn the player. Ultimately the player
is on their honor not to make a hack around this.

16.15.4 ga genesis

bool ga_genesis();

This determines if the game is in “genesis mode”. This only affects the Xar
package (so you can ignore this). This was here to make a version of the program
where there were no monsters or weapons.

16.15.5 ga kill player

bool ga_kill_player();

The function ga kill player first checks if metagame.cheat.god is true. If so,
the function returns false and nothing else happens.

Next, the function ga kill player checks if the variable game.player.alive is
true. If it is false, the function returns false and nothing else happens. If it is
true, then it sets it to false and calls the function top.killed player (in the script
Game/top.lua).

For completeness, let us explain more of the life/death process. We already
mentioned that calling the C-API function ga kill player will set an internal
variable and will in turn call the Lua function top.killed player. So how does the
player respawn? The player respawns by calling the system command “respawn
force” or “respawn passive”. For example, there can be a death window that
gets pushed onto the game window stack. When the correct button is pushed,
the window can execute the command

ga command(“respawn passive”)

When the engine respawns the player and is finished, the engine calls the func-
tion top.respawn player().

16.16 Game API: Use and Look Objects

bool ga_use_object_exists();

string ga_use_object_get_type();

bool ga_look_object_bent_exists();

int ga_look_object_bent_get_chunk_id();

LocalBlockPos ga_look_object_bent_get_lbp();

bool ga_look_object_ment_exists();

CHAPTER 16. THE GAME LUA-TO-C API 166

int ga_look_object_ment_inst_id();

bool ga_look_object_block_exists();

int ga_look_object_block_get_chunk_id();

LocalBlockPos ga_look_object_block_get_lbp();

int ga_look_object_block_get_normal_side();

The closest basic entity you are looking at is called your “look bent”. The
function ga_look_object_bent_exists will tell you if there is a basic entity in
your line of sight. If there is one, then the functions

ga_look_object_bent_get_chunk_id

and
ga_look_object_bent_get_lbp

will tell you information about it. With the current version of the engine, to
have a look bent, it cannot be too far away.

Similarly, you have a “look ment” and a “look block”. See the functions
above for getting information about these objects.

Now assume that you have either a look bent, look ment, or look block
object. Let U be the closest of the three to the player. If the object U can
be “used”, then U is called the “use object” of the player. Note that if you
turn your head, you can easily not have a use object anymore. The function
ga_use_object_exists tells you whether or not you have a use object. If you
do have one, then as we said before, it will either be your look bent, look ment,
or look block object. To know which type of object your use object is, call the
function ga_use_object_get_type. This will return either “bent”, “ment”, or
“block” (without quotes).

The “use” command causes the engine to call the corresponding __use Lua
function on the current use object.

Similarly, the command “use 2” causes the engine to call the corresponding
__use2 Lua function on the current use object.

16.17 Game API: System HUD Related

void ga_hud_msg(string msg, float duration);

This puts a message close to the center of the screen. It is displayed for
duration many seconds, unless another message is displayed in place of it.

void ga_hud_reg_damage_from_dir(int damage, Vector dir);

This puts a pink (or whatever color) solid circle near the center of the screen
which indications that an attack was made to the player from a certain direction.
The larger the circle, the more damage was dealt to the player. The dir points
from the player to where the damage comes from.

CHAPTER 16. THE GAME LUA-TO-C API 167

void ga_hud_reg_damage_from_dir_color(

int damage, Vector dir, Vector color);

This is just like the previous function, except it is rendered using the specified
color.

void ga_hud_reg_dir_tex(

string name, string tex,

Vector dir, float duration);

This puts a textured square near the center of the screen in the same area
that attacks to the player are displayed. The exact location of the square indi-
cates “what direction the picture refers to”. It stays on the screen for duration
many seconds.

16.18 Game API: Moving The Player Through
Chunk Tree

void ga_shrink();

bool ga_shrink2(Vector lp);

void ga_grow();

void ga_grow2(Vector lp);

void ga_tele(string path, Vector offset);

void ga_tele_pink();

bool ga_tele_pink2(Vector lp);

void ga_tele_blue();

void ga_tele_blue2(Vector lp);

void ga_tele_same_level(Vector lp);

For these functions here that return bools, they return true iff the operation
was successful.

The function ga_shrink will shrink the player one level (at their current
location). The function ga_shrink2 first teleports the player to the specified
position (“level position” lp) on the same level, then the player will shrink from
that location. If the player cannot teleport there, they will just shrink at their
current location.

The functions ga_grow and ga_grow2 are just like ga_shrink and ga_shrink2,
except with growing one level instead of shrinking one level.

The function ga_tele will teleport the player to the given chunk with the
specified offset within that chunk. This can be done even if the target chunk is
not in the active chunk tree.

The function ga_tele_pink is just like ga_shrink or ga_grow. It will tele-
port the user towards the root of the chunk tree as if they touched a Pink
Ring Device. The function ga_tele_pink2 is similar except it first teleports
the player to a location in the same level first before simulating touching a
Pink Ring Device. If the destination for the Pink Ring Device cannot be found,

CHAPTER 16. THE GAME LUA-TO-C API 168

then ga_tele_pink2 will return false and no movement will occur. Otherwise
it returns true and the player is teleported.

The function ga_tele_blue and ga_tele_blue2 are like ga_tele_pink and
ga_tele_pink2, except for Blue Rings instead of Pink Rings.

The function ga_tele_same_level will teleport the player to the specified
location within the same level. If the target chunk is not in the active chunk
tree, the teleportation will not happen.

16.19 Game API: Exploration

Exploration is what we call the process of chunks being loaded as the player
moves through the world.

int ga_get_fertile_radius(int level_delta);

void ga_set_fertile_radius(int level_delta, int radius);

int ga_get_level_radius(int level_delta);

void ga_set_level_radius(int level_delta, int radius);

Every level L has a level radius and a fertile radius. These numbers are
determined by the delta from L to the viewer’s level.

Basically, the “level radius” is the distance (in chunks) in which blocks get
loaded. The “fertile radius” is the distance (in chunks) in which other entities
are loaded, such as bents and ments.

The level_delta in these functions is the difference between the target level
and the viewer’s level (it should be a non-negative integer).

Here is an example of how to set the fertile and level radius to be 1 for the
5 finest levels (this is a very small radius):

local radius = 1

ga_set_fertile_radius(0, radius)

ga_set_fertile_radius(1, radius)

ga_set_fertile_radius(2, radius)

ga_set_fertile_radius(3, radius)

ga_set_fertile_radius(4, radius)

ga_set_level_radius(0, radius)

ga_set_level_radius(1, radius)

ga_set_level_radius(2, radius)

ga_set_level_radius(3, radius)

ga_set_level_radius(4, radius)

So let L be the level of the viewer. Then levels L, L− 1, L− 2, L− 3, and
L− 4 all have a fertile and level radius of 1.

Note: even though we are providing these functions, if you are making a
package for other people you should not abuse these functions. A reasonable
use for them is to make a keybinding for the player to quickly change their level

CHAPTER 16. THE GAME LUA-TO-C API 169

and fertile radii. This is more something for the end user than someone making
a package.

16.20 Game API: Windows (Part 1)

void ga_window_push(string win_name);

void ga_window_pop();

void ga_window_pop_all();

void ga_main_menu_push(string win_name);

void ga_main_menu_pop();

void ga_main_menu_pop_all(bool return_to_game);

void ga_hud_window_add(string win_name, int priority);

void ga_hud_window_remove(string win_name);

There are three types of windows: game windows, main menu windows, and
hud windows. A window cannot be in more than one category. The game
windows are put into a stack, as are the main menu windows. However the
HUD windows are put into a set.

The functions ga window push and ga window pop push windows on and off
of the game window stack. Only the top window is rendered and only the top
window gets user input. The function ga window pop all pops ALL windows
off of the game window stack.

The functions ga main menu push, ga main menu pop, and ga main menu pop all
are similar to their game windows counterparts, except for the main menu stack.

The functions ga hud window add and ga hud window remove will add and
remove windows from the HUD window set. These windows should be mostly
transparent, so the order in which these windows are rendered is important.
Windows are rendered with the highest priority first.

16.21 Game API: Viewer Queries

int ga_get_viewer_chunk_id();

int ga_get_viewer_ancestor_chunk_id(int level);

string ga_get_viewer_chunk_bt();

int ga_get_viewer_level();

Vector ga_get_viewer_offset();

Vector ga_get_viewer_lp(int level);

BlockPos ga_get_viewer_bp(int level);

string ga_get_viewer_path();

string ga_get_viewer_path_ext();

Vector ga_get_vec_to_viewer(int level, Vector lp);

float ga_lbp_dist_to_viewer(int chunk_id, int lbp_hash);

float ga_block_dist_to_viewer(int level, BlockPos bp);

//Cached ment variables.

CHAPTER 16. THE GAME LUA-TO-C API 170

Vector ga_ment_get_var_special_vec_to_viewer(int inst_id);

float ga_ment_get_var_special_dist_to_viewer(int inst_id);

The official position of the player is the camera position, which we call the
viewer position.

The function ga_get_viewer_chunk_id gets the chunk id of the viewer. The
function ga_get_viewer_ancestor_chunk_id gets the chunk id of a chunk on
the chunk path of the viewer’s chunk.

The function ga_get_viewer_chunk_bt is a helper function to get the block
type of the chunk of the viewer. Note that another way to get this is by first get
the chunk id of the chunk of the viewer, then use that to get the block position
of that chunk, and then calling ga block get.

The function ga_get_viewer_level gets the level that the viewer is on (the
level of the viewer chunk). Note that the viewer chunk is the finest chunk which
contains the viewer’s position.

ga_get_viewer_chunk_bt returns the block type of the chunk containing
the viewer. Although you can figure this out using other functions, we provide
this shortcut out of convenience.

ga_get_viewer_offset gets the offset of the viewer relative to the chunk
that contains the viewer. So the viewer offset should be a vector between
(0.0, 0.0, 0.0) and (16.0, 16.0, 16.0).

ga_get_viewer_lp gets the level position (lp) of the viewer. This is the
position of the viewer on the specified level. Note that on the viewer level, the
ga_get_viewer_lp should return the same as ga_get_viewer_offset.

ga_get_viewer_bp gets the position of the block (on the specified level)
which contains the viewer.

ga_get_viewer_path gets the path of the chunk which contains the player.
The function ga_get_viewer_path_ext gets the path of the block which con-
tains the player (so that path is one longer than that of ga_get_viewer_path.
Note that functions like this that get paths might be slow if the paths are really
long.

ga_get_vec_to_viewer returns the difference between the viewer’s level po-
sition and the specified vector. The result will point from the specified vector
to the viewer.

ga_lbp_dist_to_viewer returns the distance from the center of the given
block to the viewer (on the level of the block).

ga_block_dist_to_viewer does the same.
ga_ment_get_var_special_vec_to_viewer returns the vector from the spec-

ified moving entity to the viewer (on the level of the moving entity).
ga_ment_get_var_special_dist_to_viewer returns the distance from the

specified moving entity to the viewer (on the level of the moving entity).

CHAPTER 16. THE GAME LUA-TO-C API 171

16.22 Game API: Basic Entities

16.22.1 Getting and setting basic entities

string ga_bent_get_type(int level, BlockPos bp);

This ga bent get type function returns the type of the basic entity at the
given location. If there is no basic entity there, it will return the empty string.

void ga_bent_add(int level, BlockPos bp, string type, float rl);

void ga_bent_add_i(int level, BlockPos bp, string type, int param, float rl);

void ga_bent_add_s(int level, BlockPos bp, string type, string param, float rl);

Basic entities (BEnts) have a string parameter and an integer parameter.
These three functions will create a new basic entity at the specified level and
block position with the specified revert length (rl). The function ga bent add i
creates a basic entity with a specified integer parameter. The function ga bent add s
similarly creates a basic entity with a specified string parameter. To set both
the integer and string parameters, use the ga bet set param XXX functions.

void ga_bent_set_param_i(int level, BlockPos bp, int value, float rl);

void ga_bent_set_param_s(int level, BlockPos bp, string value, float rl);

These two functions will set the integer and string parameters of the basic
entity at the given block position.

int ga_bent_get_param_i(int level, BlockPos bp);

string ga_bent_get_param_s(int level, BlockPos bp);

These two functions will get the integer and string parameters of the basic
entity at the given block position.

void ga_bent_remove_temp(int level, BlockPos bp, int num_sec);

void ga_bent_remove_perm(int level, BlockPos bp);

The ga bent remove temp will remove the basic entity for a given number of
seconds. Note that this will remove ANY basic entity from that location. The
function ga bent remove perm will permanently remove the basic entity (and
any basic entity) from the given location.

16.22.2 ga bent sphere query

LIST ga_bent_sphere_query(int level, Vector lp, float radius);

The ga bent sphere query returns a list of all the basic entities that are
within radius distance of lp on the given level. Here is an example:

CHAPTER 16. THE GAME LUA-TO-C API 172

local level = 5

local lp = std.vec(18.2, 19.7, 20.6)

local radius = 17.4

local list = ga_bent_sphere_query(

level, lp, radius)

for k,v in pairs(list) do

local dist = v.dist --Distance of bp center to lp.

local bp = v.bp --Block position of bent.

--Do something with dist and bp!

end

The list is ordered by dist (closer bents come first).

16.22.3 ga search for bent in chunk

CLASS ga_search_for_bent_in_chunk(int chunk_id, string bent_type);

The function above searches the given chunk for a basic entity of the given
type. Let us show an example:

local data = ga_search_for_bent_in_chunk(chunk_id, "bent_gold_500")

if(data.is_valid) then

--We have found one such entity.

--This is the local block position of the found bent:

local lbp = data.value

else

--There is no such entity in the chunk.

end

16.23 Game API: Moving Entities (type)

bool ga_ment_type_var_exists(string type, string var);

The function ga ment var exists returns whether or not a moving entity
(type) has a given variable.

bool ga_ment_get_static_b(string type, string var);

int ga_ment_get_static_i(string type, string var);

float ga_ment_get_static_f(string type, string var);

Vector ga_ment_get_static_v(string type, string var);

string ga_ment_get_static_s(string type, string var);

These functions get the values of static variables for moving entities. Note:
if a variable is NOT static, then calling one of these functions will get the default
value of that variable. Note that the only way to change a static variable (or
the default value of a non-static variable) is during the package initialization
phase. See the Lua-to-C Initialization API.

CHAPTER 16. THE GAME LUA-TO-C API 173

bool ga_ment_static_b_exists_and_true(string type, string var);

The function ga ment static b exists and true is a helper function. It returns
whether or not the given moving entity variable exists AND is true.

16.24 Game API: Moving Entities (instance)

16.24.1 Creating a moving entity

void ga_ment_start(int level, Vector lp, string type);

void ga_ment_end();

void ga_ment_init_set_b(string key, bool value);

void ga_ment_init_set_i(string key, int value);

void ga_ment_init_set_f(string key, float value);

void ga_ment_init_set_v(string key, Vector value);

void ga_ment_init_set_s(string key, string value);

To create a moving entity, you call ga ment start and then ga ment end. In
between you call functions ga ment init set XXX to set variables of the moving
entity. The ga ment start requires the level of the moving entity as well as the
level position and the type name of the moving entity.

16.24.2 Getting moving entity variables

bool ga_ment_get_b(int inst_id, string var);

int ga_ment_get_i(int inst_id, string var);

float ga_ment_get_f(int inst_id, string var);

Vector ga_ment_get_v(int inst_id, string var);

string ga_ment_get_s(int inst_id, string var);

Use these ga ment get XXX functions to get the variables of a moving entity.
If the variable does not exist, the program will exit.

16.24.3 Testing if a variable exists

bool ga_ment_var_exists(int inst_id, string var);

Returns whether or not the given var exists. Although this can be accom-
plished with ga_ment_var_exists using the type of the ment, we proivde this
shortcut for convenience. Note: This function used to be called

ga_ment_var_exists2,

but we renamed it to ga_ment_var_exists. The engine currently still accepts
ga_ment_var_exists2, but eventually it will not.

The old ga_ment_var_exists function was renamed to

ga_ment_type_var_exists.

CHAPTER 16. THE GAME LUA-TO-C API 174

bool ga_ment_b_exists_and_true(int inst_id, string var);

The ga ment b exists and true is a helper function which returns true iff the
moving entity has the bool variable AND the variable is true.

16.24.4 Changing the revert length of a variable

void ga_ment_set_var_rt_only(int inst_id, string var, float rl);

Use the ga ment set var rt only function for changing the revert time of a
variable for (this instance of) a moving entity. This does NOT change the value
of the variable.

16.24.5 Setting moving entity variables

void ga_ment_set_b(int inst_id, string var, bool value);

void ga_ment_set_i(int inst_id, string var, int value);

void ga_ment_set_f(int inst_id, string var, float value);

void ga_ment_set_v(int inst_id, string var, Vector value);

void ga_ment_set_s(int inst_id, string var, string value);

Use these ga ment get XXX functions to set the variables of a moving entity.
If the variable does not exist, the program will exit. The revert time is already
specified (it is associated to the variable).

void ga_ment_toggle_b(int inst_id, string var);

void ga_ment_set_i_by_delta(int inst_id, string var, int delta);

void ga_ment_set_f_by_delta(int inst_id, string var, float delta);

void ga_ment_set_v_by_delta(int inst_id, string var, Vector delta);

These are helper functions for modifying moving entity variables. These are
analogous to the functions ga_toggle_b and ga_set_XXX_by_delta for envi-
ronment variables.

16.24.6 Inst ID and code ID

int ga_ment_inst_id_to_code_id(int inst_id);

int ga_ment_code_id_to_inst_id(int code_id);

Every moving entity has an instance ID and a code ID. The instance ID is
only valid until the player either exists the program or loads a game. The code
ID, on the other hand, is persistent. Use these functions to convert to and from
these two types of IDs.

If the code id cannot be found by ga ment code id to inst id, it returns -1.
If the inst id cannot be found by ga ment inst id to code id, it returns -1.

A code ID ≥ 0 indicates that the moving entity is “roaming”. A code ID
< −1 indicates that the moving entity is not “roaming” (and was therefore
originally created by procedural world generation).

CHAPTER 16. THE GAME LUA-TO-C API 175

16.24.7 Testing if a moving entity exists

bool ga_ment_exists(int inst_id);

The ga ment exists returns whether or not the given (instance of a) moving
entity exists.

16.24.8 Removing a moving entity

void ga_ment_remove(int inst_id);

The ga ment remove function will remove the given moving entity (instance).
If it is a roaming entity, it will be gone for good. If it is a non-roaming entity
(it is generated from procedural world generation), then it will respawn after
respawn length number of seconds.

16.24.9 Getting the type string of a moving entity

string ga_ment_get_type(int inst_id);

The function ga ment get type gets the moving entity type of the moving
entity instance.

16.24.10 Getting the level position

Vector ga_ment_get_lp(int inst_id);

The function ga ment get lp gets the position of the moving entity on its
level (its “level position”). Note: to get the level of the moving entity, call
ga ment get i(inst id, “ level”).

16.24.11 Getting the starting level level position

Vector ga_ment_get_sllp(int inst_id);

The starting level of a moving entity is the level of the first chunk that the
entity spawned into. It is very common to convert the level position (lp) of a
moving entity to the starting level. We call this the starting level level position
(sllp) of the moving entity. The function ga ment get sllp returns just that.

16.24.12 Getting the level

int ga_ment_get_level(int inst_id);

This gets the level that the ment is on. This may not be the same as
the “index level” of the ment. The index level is used for collision detection.
Basically, the index level is the finest level where the radius of the ment on that
level is less than the chunk width.

CHAPTER 16. THE GAME LUA-TO-C API 176

16.24.13 Getting the level

int ga_ment_get_chunk_id(int inst_id);

This gets the chunk_id of the chunk which “contains the ment”. This will
be the finest chunk in the active chunk tree which contains the center of the
ment.

16.24.14 Getting the radius

float ga_ment_get_radius(int inst_id);

Gets the radius of the ment, on the level returned by ga ment get level.

16.24.15 Dumping a moving entity

void ga_ment_dump(int inst_id);

The function ga ment dump prints to stdout.txt relevant information about
the given moving entity.

16.24.16 Sphere query

LIST ga_ment_sphere_query(

int level, int min_level, int max_level,

Vector lp, float radius);

The ga ment sphere query returns a list of all the moving entities that are
within radius distance of lp on level level. Also we consider moving entities that
are on the levels between min level and max level inclusive. Here is an example:

local level = 5

local min_level = 4

local max_level = 6

local lp = std.vec(18.0, 19.0, 20.0)

local radius = 17.4

local list = ga_ment_sphere_query(

level, min_level, max_level,

lp, radius)

for k,v in pairs(list) do

local ment_inst_id = v.inst_id

local dist_to_ment = v.dist

--Do something with ment_inst_id and dist_to_ment!

end

The list is ordered by dist (closer ments come first).

CHAPTER 16. THE GAME LUA-TO-C API 177

16.24.17 Alarms

void ga_ment_set_alarm(

int inst_id, float alarm_game_time, string alarm_name);

void ga_ment_set_alarm_on_level(

int inst_id, int level, float alarm_level_time, string alarm_name);

An alarm is maintained by the engine (but is NOT saved when the game
is saved). A moving entity can set an alarm. The alarm is associated to the
moving entity instance (the inst id) and the alarm also has a name. When the
time comes, the alarm goes off and the moving entity is called back (the function
on alarm of the moving entity is called). There are two types of alarms: normal
(game) and level. A normal (game) type alarm goes off at the given game time.
A level type alarm goes off when the specified level time occurs.

16.24.18 Dumping all moving entities

void ga_ment_all_dump();

This will dump information about ALL moving entities that exist in the
active chunk tree.

16.25 Game API: Particles

A particle is a point like entity used for rendering only. They are not saved
when the game is saved.

16.25.1 Adding a single particle

void ga_particle_add(CLASS args);

This function ga particle add adds a single particle. There are many param-
eters which are passed as a single class to the function. The following example
illustrates this:

local args = {}

args.level = start_level

args.pos = std.vec(4.0, 5.0, 6.0)

args.ttl = 1.0

args.size = 0.2

args.color = std.vec(1.0, 1.0, 1.0)

args.fade_time = 0.5

args.vel = std.vec(0.0, 0.0, 10.0)

args.tex = "particle_2"

args.use_min_dist = false

ga_particle_add(args)

The use min dist determines whether or not particles will be removed if they
are too close to the viewer. If use min dist is true, then this will be the case.

CHAPTER 16. THE GAME LUA-TO-C API 178

16.25.2 Adding a spherical explosion of particles

void ga_particle_explosion(CLASS args);

This adds a spherical explosion of particles. See the following example:

local args = {}

args.level = 10

args.pos = std.vec(6.0, 7.0, 8.0)

args.ttl_min = 10.0

args.ttl_max = 20.0

args.size_min = 0.2

args.size_max = 1.0

args.color = col

args.fade_time_min = 10.0

args.fade_time_max = 10.0

args.speed_min = 0.5

args.speed_max = 0.5

args.tex = "particle_2"

args.radius_min = 4.0

args.radius_max = 4.0

args.num = 200

args.use_min_dist = false

ga_particle_explosion(args)

Radius XXX is the distance of each particle from the center.

16.25.3 Adding a line of particles

void ga_particle_trail(CLASS args);

This adds a line of particles. See the following example:

local args = {}

args.level = 10

args.pos_start = std.vec(2.0, 2.0, 2.0)

args.pos_end = std.vec(12.0, 13.0, 14.0)

args.ttl_min = 0.5

args.ttl_max = 0.5

args.size_min = 0.1

args.size_max = 0.1

args.color = std.vec(1.0, 1.0, 1.0)

args.fade_time_min = 0.5

args.fade_time_max = 0.5

args.speed_min = 0.0

args.speed_max = 0.0

args.tex = "particle_2"

CHAPTER 16. THE GAME LUA-TO-C API 179

args.radius_min = 0.0

args.radius_max = 0.0

args.avg_len = 1.0

args.use_min_dist = false

ga_particle_trail(args)

The parameters radius XXX specify the distance of the particle from the
line between pos start and pos end.

16.25.4 Adding a ring of particles

void ga_particle_ring(CLASS args);

This adds a ring of particles. See the following example:

local args = {}

args.level = 10

args.pos = std.vec(6.0, 7.0, 8.0)

args.normal = std.vec(0.0, 0.0, 1.0)

args.ttl_min = 1.0

args.ttl_max = 2.0

args.size_min = 0.4

args.size_max = 0.6

args.color = std.vec(0.0, 0.0, 1.0)

args.fade_time_min = 1.0

args.fade_time_max = 1.0

args.tex = "particle_2"

args.radius = 1.0

args.speed = 4.0

args.num = 100

args.use_min_dist = false

ga_particle_ring(args)

The parameter radius is the distance of the particles from the center position.
The particles move away from the center position with the given speed.

16.26 Game API: Blocks (type)

16.26.1 Getting information about a block type

bool ga_bt_exists(string bt);

bool ga_bt_var_exists(string bt, string var);

bool ga_bt_get_physically_solid(string bt);

In this document, bt stands for “block type”. Recall that block type
strings must either start with block_ (if they correspond to a Lua script) or
XAR_ (if it is built into the engine).

CHAPTER 16. THE GAME LUA-TO-C API 180

The function ga_bt_exists returns whether or not there exists a block type
of that name. For example,

ga_bt_exists("XAR_SMALL_YELLOW_FLOWER")

returns true.
The function ga_bt_var_exists returns whether or not the given block type

has a block variable of the specified name.
The function ga_bt_get_physically_solid returns whether or not the

block (of the given type) is physically solid.
Note that there is a way you can query information about your own block

Lua scripts. For example, suppose each of your block Lua scripts has a function
called is_funky which returns a bool. Then to determine if a block type is
funky, you can run the following code:

function p.is_bt_funky(bt)

local mod_name = bt

local func_name = "is_funky"

if(_G[mod_name] and

_G[mod_name][func_name])

then

--Calling the function in the block lua script.

return _G[mod_name][func_name]()

else

return false --It is not funky.

end

16.26.2 Listing block types

LIST ga_get_block_names_with_prefix(string prefix);

The function above returns an array of all block types that start with the
given prefix. Here is an example:

local bt_array = ga_get_block_names_with_prefix("XAR_")

for k,v in ipairs(bt_array) do

local bt = v.name --The bt is actually in a member called "name".

ga_print(bt)

end

16.27 Game API: Blocks (instance)

16.27.1 Miscellaneous block functions

string ga_block_get(int level, BlockPos bp);

string ga_get_cocoon_block_of_chunk(int level, BlockPos vcp);

CHAPTER 16. THE GAME LUA-TO-C API 181

The function ga_block_get returns the block type (string) of the block with
the given position. If it is a “xar” block (built into the program), it will start
with “XAR_”. On the other hand, all blocks defined by Lua scripts will start
with “block_”.

The function ga_get_cocoon_block_of_chunk returns the block type of the
block which occupies the same volume as the given chunk. The chunk is specified
by its level and vcp (viewer centric position).

16.27.2 Changing a block

void ga_block_change_rl(

int level, BlockPos bp, string new_bt, float rl);

void ga_block_change_rl_default(

int level, BlockPos bp, string new_bt);

void ga_block_change_perm(

int level, BlockPos bp, string new_bt);

The function ga_block_change_rl changes the type of a block. A “revert
length” is specified (in seconds). After this amount of time, the block is reverted
to its previous state.

The function ga_block_change_rl_default changes the type of a block but
the revert length is specified by the static variable “__revert_length_default”
associated to the block type.

The function ga_block_change_perm permanently changes the type of a
block. Specifically, this is the same as calling ga_block_change_rl but with a
fixed very large revert length.

Note that in Fractal Block World we actually store a “stack of blocks” at
each block position, not a single block. This concept is explained more in
Section 15.4. So calling one of these “block change” functions will push a block
onto a block stack.

16.27.3 Getting block variables

bool ga_block_var_exists(int level, BlockPos bp, string var);

bool ga_block_get_b(int level, BlockPos bp, string var);

int ga_block_get_i(int level, BlockPos bp, string var);

float ga_block_get_f(int level, BlockPos bp, string var);

Vector ga_block_get_v(int level, BlockPos bp, string var);

string ga_block_get_s(int level, BlockPos bp, string var);

bool ga_block_b_exists_and_true(int level, BlockPos bp, string var);

Use the function ga_block_var_exists to see if the block has the specified
block variable. The “get” functions are used to get the values of the block
variables. If the variable does not exist, the program will exit. The function

CHAPTER 16. THE GAME LUA-TO-C API 182

ga_block_var_exists_and_true is a helper function which returns if the (bool)
variable exists AND is true.

16.28 Setting block variables

void ga_block_set_b(int level, BlockPos bp, string var, bool value);

void ga_block_set_i(int level, BlockPos bp, string var, int value);

void ga_block_set_f(int level, BlockPos bp, string var, float value);

void ga_block_set_v(int level, BlockPos bp, string var, Vector value);

void ga_block_set_s(int level, BlockPos bp, string var, string value);

Use the above functions to set block variables. If the variable does not exist,
the problem will exit.

The concept of the “revert time” of a block variable is discussed in Sec-
tion 15.4.

void ga_block_toggle_b(int level, BlockPos bp, string var);

void ga_block_set_i_by_delta(int level, BlockPos bp, string var, int delta);

void ga_block_set_f_by_delta(int level, BlockPos bp, string var, float delta);

void ga_block_set_v_by_delta(int level, BlockPos bp, string var, Vector delta);

The by delta functions take the specified variable and add to them the value
delta.

16.28.1 Block variables example

Here is a complete example of a soda machine block which the player can use.

function p.get_is_solid() return true end

function p.get_tex() return "block_soda_machine" end

function p.main() set_default_block("s") end

function p.type_init(id)

ia_block_new_var_i(id, "num_sodas", 10)

end

function p.get_can_use(level, bp)

return true

end

function p.get_use_msg(level, bp)

local num_sodas = ga_block_get_i(level, bp, "num_soads")

return "Sodas left: " .. tostring(num_sodas)

end

--Drinking a soda gives the player 5 health.

CHAPTER 16. THE GAME LUA-TO-C API 183

function p.on_use(level, bp)

local num_sodas = ga_block_get_i(level, bp, "num_sodas")

if(num_sodas <= 0) then return end

local old_player_health = ga_get_i("var.health")

local new_player_health = old_player_health + 5

ga_set_i("var.health", new_player_health)

num_sodas = num_sodas - 1

ga_block_set_i(level, bp, "num_sodas", num_sodas)

end

Here is how we can rewrite the on use function to use “set by delta” func-
tions:

function p.on_use(level, bp)

if(ga_block_get_i(level, bp, "num_sodas") <= 0) then return end

ga_set_i_by_delta("var.health", 5)

ga_block_set_i_by_delta(level, bp, "num_sodas", -1)

end

16.28.2 The most common block type

string ga_get_most_common_bt_in_chunk(int chunk_id);

Use the function above to get the block type which occurs most frequently within
the specified chunk. This function is slow.

16.28.3 Searching for blocks

CLASS ga_search_for_bt_in_chunk(int chunk_id, string bt);

CLASS ga_search_for_bt_in_chunk_random(int chunk_id, string bt);

These will search for a block with the specified type in the given chunk. It
will return the first match. The random version is the same, but it searches for
the block in a (pseudo) random order. Both of these functions are slow. Here
is an example:

local chunk_id = ga_get_viewer_chunk_id()

local data = ga_search_for_bt_in_chunk(chunk_id, "XAR_SMALL_YELLOW_FLOWER")

if(data.is_valid) then

local pos = data.value --Value is a "block position".

ga_console_print("found pos = " .. std.vec_to_str(pos))

end

16.29 Game API: Respawn Point andWaypoints

16.29.1 Respawn point

string ga_get_respawn_path();

CHAPTER 16. THE GAME LUA-TO-C API 184

void ga_set_respawn_point(string path, BlockPos lbp);

Use the function ga_get_respawn_path to get the path of the chunk where
the player will be spawned when they respawn.

Use the function ga_set_respawn_point to set the game’s current respawn
point. When the player dies, he will respawn there. Note that to respawn,
the player should enter the following system command “respawn passive”. The
lbp should be a local block position, specifying a block between (0,0,0) and
(15,15,15) inclusive.

16.29.2 Waypoints

void ga_add_waypoint_sloppy(string path, string name_override);

void ga_add_waypoint_sloppy_in_only(string path, string name_override);

These functions are called “sloppy” because we do not specify the position of
the waypoint within the chunk. The function ga_add_waypoint_sloppy adds
the given chunk to the list of available waypoints. Note that the chunk must
actually contain a waypoint for this to work.

The function ga_add_waypoint_sloppy_in_only is similar but it applies to
in-only waypoints. The reason why there are two of these functions is because
a chunk could contain a normal waypoint and an in-only waypoint.

16.30 Game API: Coordinates: Blocks and Chunks

To review, here are what various abbreviations stand for:

-- lbp = "local block position" (a vector of ints)

-- lbph = "local block position hashcode" (an integer)

-- bp = "block position" (a vector of ints)

-- offset = "position of a point in a chunk’s coordinate system" (a vector of floats)

-- lp = "level position (of a point in a level)" (a vector of floats)

-- vcp = "viewer centric position" (a vector of ints)

Recall that every chunk is itself a block (except for the root chunk of the
world). Every chunk is on a level. The root chunk is on level 0. Also, every
block is on a level. The level of a block is the same as the level of the
chunk which contains the block.

Thus if C is a chunk on level L, then the level of the “block version of C” is
L− 1. Do not get confused by this.

Every chunk (that is in the active chunk tree) has a chunk id, which is a
non-negative integer.

Every chunk has what is called its path from the root of the chunk tree
(represented by a string, such as 777_6e8).

Finally every chunk (in the active tree) has what is called its viewer centric
position (VCP), which is the position of the chunk relative to the chunk on the
same level which contains the player.

CHAPTER 16. THE GAME LUA-TO-C API 185

To summarize, we have 4 ways of referring to a chunk:

1) By chunk id,

2) By level + viewer centric position,

3) By level + block position,

4) By path.

Note that if (L,VCP) is used as the VCP representation of the chunk, then
its block position representation will be of the form (L− 1,BP).

16.30.1 base/Game/std.lua

Many coordinate functions are provided in the Lua in the file base/Game/std.lua.
Here are some such functions:

vec,

bp,

lbp_to_bp

bp_to_parent_vcp

bp_to_lbp

local_to_level_pos,

level_to_local_pos

lp_to_vcp

lp_to_offset,

block_center,

lbph_to_lbp,

lbp_to_lbph,

lp_to_bp,

side_int_to_str,

side_str_to_int,

side_int_to_vec,

get_adj_bp

Some of these functions we provide as part of the Game API as well, for
convenience.

16.30.2 From chunk id

int ga_chunk_id_to_level(int chunk_id);

BlockPos ga_chunk_id_to_vcp(int chunk_id);

string ga_chunk_id_to_path(int chunk_id);

The function ga_chunk_id_to_level returns the level of the given chunk.
The function ga_chunk_id_to_vcp returns the vcp (in the chunk’s level) of the
given chunk. The function ga_chunk_id_to_path returns the chunk path of
the given chunk.

CHAPTER 16. THE GAME LUA-TO-C API 186

16.30.3 To chunk id

int ga_vcp_to_chunk_id(int level, BlockPos vcp);

int ga_path_to_chunk_id(string path);

The function ga_vcp_to_chunk_id returns the chunk id of a chunk given its
level and viewer centric position.

The function ga_path_to_chunk_id returns the chunk id of a chunk given
its chunk path.

16.30.4 Converting from lbp to bp

BlockPos ga_chunk_id_and_lbp_to_bp(int chunk_id, BlockPos lbp);

BlockPos ga_lbp_to_bp(BlockPos vcp, BlockPos lbp);

Use these functions for converting from a local block position (which de-
scribes the position of a block within a chunk) to a block position. Note that
the vcp version can easily be implemented in Lua as a math function. Both
versions are provided for convenience.

16.30.5 Converting between vcp and bp

BlockPos ga_vcp_to_bp(int level, BlockPos vcp);

BlockPos ga_bp_to_vcp(int level, BlockPos bp);

These are perhaps the most subtle coordinate functions. It would be a
little tricky to try to implement these yourself because they rely on where the
viewer is located in the chunk tree. You should ask yourself if you really need
to use these functions, especially ga_bp_to_vcp which you might never use.
We are providing ga_bp_to_vcp for completeness, not because it is extremely
useful. On the other hand ga_bp_to_parent_vcp is a quite common and useful
function.

For both of these functions, there needs to be at least one chunk in the active
chunk tree on the same level as the chunk in question. If this is not true, the
program will exit.

The function ga_vcp_to_bp takes the VCP representation (L, vcp) of a
chunk C and returns the block position bp such that (L − 1,bp) is the block
representation of the block form of C.

The function ga_bp_to_vcp takes the block position representation (L,bp)
of a chunk C and returns vcp such that (L+ 1, vcp) is the VCP representation
of C.

16.30.6 Chunk id to parent chunk id

int ga_chunk_id_to_parent_chunk_id(int chunk_id);

This takes the chunk id of a chunk and returns the chunk id of the parent of
that chunk. If the original chunk does not exist, or the parent does not exist, it
will return a negative number.

CHAPTER 16. THE GAME LUA-TO-C API 187

16.30.7 Block position to parent block position

BlockPos ga_bp_to_parent_bp(int level, BlockPos bp);

This takes a block and returns the block representation of the chunk which
contains the block.

For example, if this function is passed (L,bp1), then it will return bp2 such
that (L-1,bp2) is the block representation of the chunk which contains the orig-
inal block.

16.30.8 Block position to parent vcp

BlockPos ga_bp_to_parent_vcp(BlockPos bp);

As said before, this is a quite common function, This takes a block and
returns the VCP representation of the chunk which contains the block. Note
that this function does not need to know what level the block is on.

For example, if this function is passed (L,bp), then it will return vcp such
that (L,vcp) is the block representation of the chunk which contains the original
block.

This is similar to ga_bp_to_parent_bp. However, unlike that function, this
function is trivial to implement in Lua as a math function.

16.30.9 Block position to parent chunk id

int ga_bp_to_parent_chunk_id(int level, BlockPos bp);

Similar to previous functions, this takes in a block position and returns the
chunk id of the chunk which contains the block.

16.30.10 Block position to path

string ga_bp_to_path(int level, BlockPos bp);

The function ga_bp_to_path returns the path of the chunk that occupies
the specified block’s position. The chunk containing bp needs to be in the active
chunk tree. However the chunk occupying the same space as the block need not
be in the active chunk tree.

16.30.11 Block position to lbp

BlockPos ga_bp_to_lbp(BlockPos bp);

This takes a block position and returns the local block position of the block
within the chunk that contains the block. This is trivial to implement in Lua
as a math function.

CHAPTER 16. THE GAME LUA-TO-C API 188

16.30.12 Block coordinates example

You can have the following be the code for the __on_use function of a block
script:

function p.__on_use(level, bp1)

local lbp = ga_bp_to_lbp(bp1)

local chunk_id = ga_bp_to_parent_chunk_id(level, bp1)

local bp2 = ga_chunk_id_and_lbp_to_bp(chunk_id, lbp)

local parent_vcp1 = ga_bp_to_parent_vcp(bp1)

local bp3 = ga_lbp_to_bp(parent_vcp1, lbp)

local parent_bp1 = ga_bp_to_parent_bp(level, bp1)

local parent_bp2 = ga_vcp_to_bp(level, parent_vcp1)

local parent_vcp2 = ga_bp_to_vcp(level-1, parent_bp2)

local parent_bp3 = ga_vcp_to_bp(level, parent_vcp2)

--bp1, 2, and 3 should be the same.

--parent_bp1, 2, and 3 should be the same.

--parent_vcp1 and 2 should be the same.

ga_print("lbp = " .. std.vec_to_str(lbp))

ga_print("bp1 = " .. std.vec_to_str(bp1))

ga_print("bp2 = " .. std.vec_to_str(bp2))

ga_print("bp3 = " .. std.vec_to_str(bp3))

ga_print("parent_bp1 = " .. std.vec_to_str(parent_bp1))

ga_print("parent_bp2 = " .. std.vec_to_str(parent_bp2))

ga_print("parent_bp3 = " .. std.vec_to_str(parent_bp3))

ga_print("parent_vcp1 = " .. std.vec_to_str(parent_vcp1))

ga_print("parent_vcp2 = " .. std.vec_to_str(parent_vcp2))

end

16.31 Game API: Coordinates: Vectors

16.31.1 To level position

Vector ga_chunk_id_and_offset_to_lp(int chunk_id, Vector offset);

Vector ga_offset_to_lp(BlockPos vcp, Vector offset);

The first function takes in a chunk id and an offset position within that
chunk and returns the level position of the point. The second function is similar
but it uses the VCP of the chunk (this second version is trivial to implement in
Lua as a math function). We provide both of these shortcuts for convenience.

16.31.2 Converting from one level to another

CLASS ga_level_scale_factor(int source_level, int target_level);

CLASS ga_convert_lp(

int source_level, int target_level, Vector source_lp);

CHAPTER 16. THE GAME LUA-TO-C API 189

Every point in space is on every level. The function ga convert lp converts
the coordinates of a point (seen on level source level) to a point on level tar-
get level.

The function ga level scale factor returns how much scaling there is from
level source level to level target level. For example, ga level scale factor(10, 11)
= 16. Also, ga level scale factor(10, 8) = 1/256.

These functions return a table C. It has a bool member called is valid. If
that is true, then the member “value” of C is the correct result of the query.
Here is an example:

local viewer_level = 15

local ment_level = 13

local data = ga_level_scale_factor(viewer_level, ment_level)

if data.is_valid then

ga_print("The level scale factor is: " .. tostring(data.value))

end

16.31.3 Finest chunk containing point

CLASS ga_finest_chunk_containing_point(int level, Vector lp);

This function returns the finest chunk, in the active chunk tree, that contains
the specified point. In other words, it returns the chunk on the level with the
greatest number that contains the point. Actually, more information is returned:
it returns a table C with the following members:

� is valid (a bool)

� level (an int)

� chunk id (an int)

� lp (a vector)

Here lp is the level position of the point on the level returned in C.

16.32 Game API: Math

The math functions to a large extent appear in the file

base/Game/std.lua

However here is a game API function that is not in that Lua script:

CLASS ga_path_diff(string path1, string path2);

Use the path diff function to get a vector which points from the first path
to the second. Here is an example:

CHAPTER 16. THE GAME LUA-TO-C API 190

local path_1 = "777_564"

local path_2 = "777_8a3_857"

local result = ga_path_diff(path_1, path_2)

if(result.is_valid) then

--The float dist is the distance from the center of the chunk C1

--at path_1 to the center C2 of the chunk at path_2,

--calculated on the level of C1.

local dist = result.dist

--The vector dir points from the center of C1

--to the center of C2.

local dir = result.dir

end

You can use this to implement a “beacon” which the player can see on their
screen, guiding them towards an object in the world that is in a chunk that has
not yet been loaded.

16.33 Game API: Movement and Physics

16.33.1 Setting the camera position

void ga_camera_set_look(Vector look, Vector up);

Use the function above to forcibly turn the player’s head. You must always
pass the “up” vector, but it is only used if the game is in 6 degrees of freedom
mode (“not using true up”).

Note that you can get the orientation of the camera by getting the following
(system) variables:

game.player.camera.look

game.player.camera.up

game.player.camera.left

16.33.2 Moving

void ga_move_set_desired_travel(Vector travel);

void ga_move_set_spin(float spin);

The way the player moves though the world is by specifying a move (travel)
vector. The engine then tries to move the player along that vector as much as
possible, doing collision detection in the process. The function

ga_move_set_desired_travel

specifies this travel vector. So, this should be called each discrete update.
The function ga_move_set_spin is only used in 6 degrees of freedom games.

This is used to specify how much to rotate the viewer around the viewer’s look
vector. Again, this should be called each discrete update.

CHAPTER 16. THE GAME LUA-TO-C API 191

16.33.3 Gravity

bool ga_move_get_on_sure_footing();

void ga_move_set_ledge_guards(bool on);

In games with gravity, we except that there will be more friction when the
player is just above a block surface (and there will be more movement accel-
eration). The function ga move get on sure footing returns true if the player
is just above a block surface so that he should be considered “on the ground”.
Note: when jumping up a staircase, the player will be able to “catch each ledge”
and move quickly forward.

16.33.4 Setting the body type

void ga_move_set_body_spirit();

bool ga_move_set_body_ground(

Vector trans, float radius, float bot_to_eye, float eye_to_top)

bool ga_move_set_body_fly(

Vector trans, float radius, bool use_true_up);

There are several player body types: spirit, ground, and fly. Use these
functions to set the body type. These functions may fail (due to geometry in
the world), in which case the player’s body will remain the same.

When the player has the spirit body type, he is in a chunk but does not
truly interact with anything in the world. This body type is used for traversing
the chunk tree to find a suitable location. For example, this can be used to
create the initial starting position of the player.

The body type ground is intended for games with gravity. In this body
type, the player is modeled as a cylinder. The eye of the player is exactly
bot_to_eye many units from the bottom of the cylinder, and the eye of the
player is exactly eye_to_top many units to the top of the cylinder. When
the ga_move_set_body_ground is first called, the eyes of the player are first
translated by the vector trans.

The body type fly is intended for space games. In this body type, the player
is modeled as a sphere. Again, the eyes of the player are first translated by
trans before the new body dimensions take place. The argument use_true_up
argument specifies whether the top middle of the player’s screen points in the
positive Z direction. If this is set to false, the player can easily become upside
down.

16.33.5 The character model

void ga_player_model_set_look();

void ga_player_model_q2md2_set_cmd(string cmd);

void ga_player_model_q2md2_set_state(string state);

CHAPTER 16. THE GAME LUA-TO-C API 192

These functions modify the player model of the player. The player model is
a Quake 2 character model. The function ga player model set look causes the
player model to face in the direction that the player is facing.

Use the function

ga_player_model_q2md2_set_state

to set the state of the player model. The following are the accepted versions of
that string: the empty string (without quotes), run, crouch and crouch_run.
The idea is that the player model is in a certain state, such as run, but it can
preform commands like wave or jump_up which interrupt the run state.

Use the function

ga_player_model_q2md2_set_cmd

when a certain action (or command) needs to take place. Here are the accept-
able commands: the empty string (without quotes), stand, run, attack, pain,
jump_up, jump_down, flip, salute, taunt, wave, point, crstand, crwalk,
crattack, crattack, crpain, crdeath1, death1, death2, death3.

The player can be doing at most one command at a time. When they
are finished their command, they will perform their “state” action, which will
continue on a loop.

16.34 Game API: Visibility

bool ga_vis_test_level(int level, Vector lp_start, Vector lp_end);

The function returns true iff the line segment from lp start to lp end does
not intersect any solid blocks on the given level.

16.35 Game API: Rendering

Render functions in the Game API can be called at certain times, such as in the
__render_augmented functions of game scripts and the __render functions of
bent and ment scripts.

Fractal Block World uses OpenGL for rendering. An important concept of
that library is the “matrix stack”. At any given point we can take the matrix
M on the top of the stack. This is a 4x4 matrix which we can multiply on the
right by a (column) vector v to get Mv. Here are functions which modify the
program’s matrix stack:

void ga_render_push_matrix();

void ga_render_pop_matrix();

void ga_render_matrix_load_identity();

void ga_render_matrix_row_major(

float m11, float m12, float m13, float m14,

CHAPTER 16. THE GAME LUA-TO-C API 193

float m21, float m22, float m23, float m24,

float m31, float m32, float m33, float m34,

float m41, float m42, float m43, float m44);

void ga_render_matrix_translated(float trans_x, float trans_y, float trans_z);

void ga_render_matrix_scaled(float scale_x, float scale_y, float scale_z);

void ga_render_matrix_rotated(

float angle,

Vector axis);

void ga_render_matrix_frame(

Vector look,

Vector up,

Vector left);

void ga_render_matrix_frame_from_ment(int inst_id);

Let M be the matrix on the top of the matrix stack. The function

ga_render_push_matrix

pushes a copy of M to the top of the stack. That is, if before the stack had size
n with M on top, then after the push the stack has size n+ 1 and the top two
matrices are both M .

The function ga_render_pop_matrix pops the matrix on the top of the
matrix stack (it removes it). So if before the stack had size n, after the pop it
will have size n− 1.

The function ga_render_matrix_load_identity replaces the matrix on the
top of the matrix stack with the identity matrix.

The function ga_render_matrix_row_major takes the matrix N on the top
of the matrix stack and multiplies it by the matrix M specified by the arguments
of the function to get N ∗M . The arguments of the function determine M as
follows:

M =


m11 m12 m13 m14
m21 m22 m23 m24
m31 m32 m33 m34
m41 m42 m43 m44

 .

That is, the elements of M are specified in “row major order”.
The function ga_render_matrix_translated corresponds to the OpenGL

function glTranslated. It takes the matrix on the top of the matrix stack and
multiplies it by the specified translation matrix.

The function ga_render_matrix_scaled corresponds to the OpenGL func-
tion glScaled. It takes the matrix on the top of the matrix stack and multiplies
it by the specified scaling matrix.

The function ga_render_matrix_rotated takes the matrix on top of the
matrix stack and multiplies it by a rotation matrix, specified by the given angle
and axis.

The function ga_render_matrix_frame takes the matrix on the top of the
matrix stack and multiples it by a certain matrix M. The matrix M is such

CHAPTER 16. THE GAME LUA-TO-C API 194

that multiplication by it corresponds to the transformation which maps (1,0,0)
to look, (0,1,0) to -left, and (0,0,1) to up. You can use this function to render
a weapon that the player is holding. That is, you get the look, left, and up
vectors of the camera and use those.

Every moving entity has its own “frame”, which specifies its orientation. A
frame is a triple of unit vectors which are perpendicular to each other. The
function ga_render_matrix_frame_from_ment takes the matrix on the top of
the matrix stack and multiplies it by the matrix which rotates to the orientation
of that frame. It is intended that you use this in the __render function of a
moving entity.

void ga_render_ment_typical(int inst_id);

void ga_render_mesh(string mesh_name);

void ga_render_mesh_with_tex(

string mesh_name,

string tex_name);

void ga_render_line(

Vector v1,

Vector v2);

void ga_render_line_thick(

Vector v1,

Vector v2,

float thickness);

void ga_render_color(

Vector color);

The function ga_render_ment_typical renders an ment in the usual way
(the way hardcoded by the engine). It is intended to be called inside an
__on_render function of the ment. That is, before the __on_render function
of an ment is called, a translation matrix is pushed onto the matrix stack. Then
if ga_render_ment_typical is called inside that function, then that translation
will not be applied again.

The function ga_render_mesh renders the mesh of the given name (using
the default texture associated to that mesh).

The function ga_render_mesh_with_tex renders the mesh with the given
name buy using the specified texture as an override.

The function ga_render_line renders a line in the world from vector v1
to the vector v2. The function ga render color can be called before this (or a
sequence of these calls) to specify the color.

The function ga_render_line_thick is just like ga render line but you can
specify the thickness of the line. Here line thickness is in terms of how OpenGL
defines it.

The function ga_render_color can be called before certain render functions
to specify the color.

void ga_render_clear_depth_buffer();

CHAPTER 16. THE GAME LUA-TO-C API 195

The function ga_render_clear_depth_buffer clears the OpenGL depth
buffer. You probably do not want to call this function.

16.36 Game API: Windows (Part 2)

These functions are described in Chapter 17.

16.37 Game API: Rebooting the Game

string ga_reboot_dyn_itr_get()

void ga_reboot_dyn_itr_next()

bool ga_reboot_dyn_itr_at_end()

void ga_reboot_dyn_itr_save()

At any time the player can choose to “reboot” their saved game. This
will delete all chunk files in that save game directory. It will keep all global
vars stored in env_vars.txt in the same gave directory. What happens to the
(dynamic) variables in dyn_vars.txt is more complicated.

By default, all dynamic variables will be deleted. However, the package can
choose to save them one at a time. The functions described here iterate over
all dynamic variables, and the function ga_reboot_dyn_itr_save marks the
current var that we have iterated to to be saved.

This is all accomplished within the function top.__reboot_game in the file
top.lua. This function is called by the engine when the game is rebooted, just
before top.__new_game is called. The function top.__reboot_game will be
called over and over again until it returns true.

Here is an example of what you might want the function top.__reboot_game

to look like. This function only saves the variable called dyn.test.my_favorite_book.

--This is in the file "top.lua".

function p.__reboot_game()

ga_print("Here in top.__reboot_game")

--Only checking ten thousand vars

--during this function call.

local countdown = 10000 --10 thousand.

while true do

if ga_reboot_dyn_itr_at_end() then

--Done the rebooting process.

return true

end

countdown = countdown - 1

if(countdown <= 0) then

--Too many vars to do now,

CHAPTER 16. THE GAME LUA-TO-C API 196

--must do them later.

return false

end

local var = ga_reboot_dyn_itr_get()

--Only saving the var called

--"dyn.test.my_favorite_book".

if var == "dyn.test.my_favorite_book" then

ga_reboot_dyn_itr_save()

end

ga_reboot_dyn_itr_next()

end

--Will never reach here.

return true

end

16.38 Game API: File IO

int ga_open_file_for_writing(string & file_name);

void ga_write(int handle, string str);

void ga_close_file(int handle);

You can create text files and write to them. However there are limitations
due to security. The file name must be of the form X.txt or X.lua, where X is
a non-empty string that only contains letters (capital and lowercase), numbers,
and underscores.

Suppose the file name is foo.txt. The file will be created in the location
Output/FileOut/foo.txt relative to the root directory of the program.

The function ga_open_file_for_writing opens the file (with the given
name) for writing. It returns an integer handle which is what you use to refer
to the file.

The function ga_write actually writes to the file. It appends the string str
to the end (but note that the function ga_open_file_for_writing clears the
file). The function ga_write does NOT insert extra newline characters.

The function ga_close_file closes the file.
Here is an example:

local handle = ga_open_file_for_writing("favorite_colors.txt")

ga_write(handle, "green\n")

ga_write(handle, "red\n")

ga_close_file(handle)

CHAPTER 16. THE GAME LUA-TO-C API 197

16.39 Game API: Accessibility

bool ga_get_is_colorblind();

Vector ga_get_colorblind_closest(Vector color);

Vector ga_get_colorblind_bynum(int num);

void ga_set_colorblind_bynum(int num, Vector color);

The way colorblind support works is the following: the player who is color-
blind creates a small palate of colors (say 10 to 20) such that they can distin-
guist any two of the colors. Then, as the developer of your package, you call
ga_get_is_colorblind and if this returns true, then as you see fit, when you
are going to render a certain color you replace that color with the closest color
in the pallete.

The function ga_get_is_colorblind returns whether the player is request-
ing colorblind mode. Note that a player might want to do this even if they are
not colorblind.

The function ga_get_colorblind_closest returns the “closest color” in
“the palette” to the one specified.

The function ga_set_colorblind_bynum(n, color) specifies the n-th color
in the palette. The player who is colorblind would call this function. There is
a catch: if there are n colors in the palette, then color n+1 must be set to the
following invalid color:

std.vec(-1.0, -1.0, -1.0).

This is how the system knows the palette is over.
Let us show how a player who is colorbind could set the palette. They can

modify the file Input/Scripts/game_startup.lua and make it look something
like this:

function p.__main() --Called every time a game is loaded.

p.color_blind_init() --Defined below.

-- ...

end

function p.color_blind_init()

--First we enable color blind mode.

--This will cause the function ga_get_is_colorblind

--to return true.

ga_command("set menu.colorblind.enable true")

--Setting the palette.

p.color_blind_init_helper(1, "^xcddde3")

p.color_blind_init_helper(2, "^xf7ee00")

p.color_blind_init_helper(3, "^x0021e1")

p.color_blind_init_helper(4, "^x36db00")

p.color_blind_init_helper(5, "^xed00ff")

CHAPTER 16. THE GAME LUA-TO-C API 198

p.color_blind_init_helper(6, "^x0080ff")

p.color_blind_init_helper(7, "^xff4242")

p.color_blind_init_helper(8, "^x00c2ff")

p.color_blind_init_helper(9, "^x7b0470")

p.color_blind_init_helper(10, "^xff4692")

p.color_blind_init_helper(11, "INVALID")

end

function p.color_blind_init_helper(i, code)

if(code == "INVALID") then

local invalid_color = std.vec(-1.0, -1.0, -1.0)

ga_set_colorblind_bynum(i, invalid_color)

return

end

local color = ga_color_code_to_vec(code)

ga_set_colorblind_bynum(i, color)

end

If people in the community what their palettes to be included with the game,
please send us your palettes and a description of the type of colorblindness the
palette applies to. We will accept image files containing colored rectangles or
the pallets to be given by code like that shown above.

16.40 Game API: Text and Strings

Vector ga_color_code_to_vec(string code);

string ga_color_vec_to_code(Vector color);

string ga_txt_strip_esc_seq(string input);

The function ga_color_code_to_vec takes in a color code string and returns
a color in the form of a vector (x = red, y = green, z = blue). Here x,y,z are
between 0 and 1. For example, if you pass ^x00ff00 to the function it will
return the vector (0.0, 1.0, 0.0).

The function ga_color_vec_to_code works in the opposite direction. For
example, if you pass it std.vec(0.0, 1.0, 0.0) it will return ^x00ff00.

The function ga_txt_strip_esc_seq takes the input string and removes all
color escape sequence codes from it. For example, if you pass the function the
string

“I like the color ^x00ff00RED^! the best”,

it will return the string

“I like the color RED the best”.

16.41 Game API: Windows Clipboard

void ga_copy_to_clipboard(string str);

CHAPTER 16. THE GAME LUA-TO-C API 199

string ga_paste_from_clipboard();

Use these to read and write a string to and from the Windows clipboard.

Chapter 17

The Game Lua-to-C API:
Windows

In Chapter 16 we talked about most of the Game Lua-to-C API. In this chapter
we will discuss more of this API. Specifically, we will discuss functions that are
intended to be called from Window Lua Scripts.

17.1 The API

string ga_win_wid_to_win_name(int wid);

int ga_win_win_name_to_wid(string win_name);

LIST ga_win_get_windows_on_hud();

LIST ga_win_get_windows_on_main_menu_stack();

LIST ga_win_get_windows_on_game_stack();

string ga_win_get_main_menu_stack_top();

string ga_win_get_game_stack_top();

bool ga_win_is_any_window_open();

void ga_win_set_back_params(

int wid, Vector color, float alpha1, float alpha2);

void ga_win_set_front_color(int wid, Vector color);

void ga_win_set_front_color_default(int wid);

void ga_win_set_char_size(int wid, float char_width, float char_height);

void ga_win_set_background(int wid, Vector color, float alpha);

void ga_win_set_background_default(int wid);

void ga_win_line(int wid, float x1, float y1, float x2, float y2, Vector color);

void ga_win_quad(

int wid, float min_x, float min_y, float max_x, float max_y, string tex);

void ga_win_quad_two(

200

CHAPTER 17. THE GAME LUA-TO-C API: WINDOWS 201

int wid, float min_x, float min_y, float max_x, float max_y,

string tex1 string tex2, float frac);

void ga_win_quad_color(

int wid, float min_x, float min_y, float max_x, float max_y, Vector color);

void ga_win_txt(

int wid, float min_x, float min_y, string txt);

void ga_win_txt_alpha_bg(

int wid, float min_x, float max_x, float alpha, string txt);

void ga_win_txt_center(

int wid, float min_y, string txt);

void ga_win_txt_center_at_bg(

int wid, float center_x, float min_y, string txt);

void ga_win_txt_box(

int wid, string txt, bool go_back_msg);

void ga_win_widget_small_list_start(

int wid, float min_y, float max_y,

float char_width, float char_height,

Vector txt_color, LIST);

void ga_win_widget_small_list_set_use_nums(bool value);

int ga_win_widget_small_list_process_input(int wid);

string ga_win_widget_small_list_get_entry(int wid, int index);

void ga_win_widget_text_input_start(

int wid, float min_y, float char_width, float chat_height);

string ga_win_widget_text_input_process_input(int wid);

string ga_win_widget_text_input_get_text();

string ga_win_widget_text_input_set_enable_enter(bool value);

void ga_win_widget_mutable_text_box_start(

int wid, float min_x, float max_x, float min_y, float max_y,

float char_width, float char_height,

Vector txt_color, string init_str);

string ga_win_widget_mutable_text_box_get_text(int wid);

void ga_win_widget_mutable_text_box_set_text(int wid, string str);

void ga_win_widget_mutable_text_box_end(int wid);

Vector ga_win_get_cursor_pos(int wid);

Vector ga_win_get_cursor_diff(int wid);

void ga_win_scroll(int wid, float scroll_x, float scroll_y);

Vector ga_win_mtos(int wid, float x, float y);

Vector ga_win_stom(int wid, float x, float y);

void ga_win_set_scroll_bounds(

int wid, float min_x, float min_y, float max_x, float max_y);

CHAPTER 17. THE GAME LUA-TO-C API: WINDOWS 202

//Input without the WID.

bool ga_win_key_down(string key);

bool ga_win_mouse_down(bool left);

bool ga_win_mouse_down2(int button);

//Input with the WID.

bool ga_win_key_pressed(int wid, string key);

bool ga_win_mouse_pressed(int wid, bool left);

bool ga_win_mouse_pressed2(int wid, int button);

bool ga_win_mouse_released(int wid, bool left);

bool ga_win_mouse_released2(int wid, int button);

bool ga_win_mouse_wheel_up(int wid);

bool ga_win_mouse_wheel_down(int wid);

bool ga_win_key_pressed_or_spammed(

int wid, string key, float init_wait, float subsequent_wait);

17.2 The Window ID (WID)

(Almost) all of these API functions take the window ID (WID) of the current
window. Every window script win script.lua is associated to exactly one WID.
The official “name” of that would would be “win script”.

17.3 Window management

string ga_win_wid_to_win_name(int wid);

int ga_win_win_name_to_wid(string win_name);

Use these to convert back and forth between the name of a window (the
name of the window script without the “.lua”) and the WID (window id).

LIST ga_win_get_windows_on_hud();

LIST ga_win_get_windows_on_main_menu_stack();

LIST ga_win_get_windows_on_game_stack();

Use these functions to get an array of the windows that are on the hud, main
menu stack, and game stack. Each element of the returned array is a table, with
a member called “name”, which is the name of the window. Here is an example:

local array = ga_win_get_windows_on_hud()

for i = 1,#array do

ga_console_print(array[i].name)

end

Use the functions

CHAPTER 17. THE GAME LUA-TO-C API: WINDOWS 203

string ga_win_get_main_menu_stack_top();

string ga_win_get_game_stack_top();

Finally, the function

bool ga_win_is_any_window_open()

is a helper function that returns true iff any one of the following conditions
is true:

� The main menu stack is non-empty,

� The game menu stack is non-empty,

� The player is in the main menu (the escape key menu), or

� The console is open.

17.4 Setting Foreground and Background Params

void ga_win_set_back_params(

int wid, Vector color, float alpha1, float alpha2);

void ga_win_set_front_color(int wid, Vector color);

void ga_win_set_front_color_default(int wid);

void ga_win_set_char_size(int wid, float char_width, float char_height);

void ga_win_set_background(int wid, Vector color, float alpha);

void ga_win_set_background_default(int wid);

The function ga win set back params sets various parameters related to the
background. This is used to render behind text, for example. The argument
alpha2 should be more opaque than alpha1.

The function ga win set front color sets the “front color”, which is used as
the color of text for example. The function ga win set front color default sets
the front color to the default value (the value stored in the environment variable
“menu.text color”).

The function ga win set char size sets the character width and height of text.
A width of 1.0 means it is the width of the entire screen, and a height of 1.0
means it is a height of the entire screen.

The function ga win set background sets the background color and alpha.
The function ga win set background default sets the background to its default
color and alpha.

Here is an example of how these functions can be used:

function p.render(wid)

ga_win_set_front_color(wid, std.vec(1.0, 1.0, 1.0))

ga_win_set_back_params(wid, std.vec(0.0, 0.0, 0.0), 0.1, 0.3)

ga_win_set_background(wid, std.vec(0.0, 0.0, 0.0), 0.2);

end

CHAPTER 17. THE GAME LUA-TO-C API: WINDOWS 204

17.5 Screen Elements

void ga_win_line(int wid, float x1, float y1, float x2, float y2, Vector color);

Use this for drawing a line on the screen.

void ga_win_quad(

int wid, float min_x, float min_y, float max_x, float max_y, string tex);

void ga_win_quad_two(

int wid, float min_x, float min_y, float max_x, float max_y,

string tex1 string tex2, float frac);

void ga_win_quad_color(

int wid, float min_x, float min_y, float max_x, float max_y, Vector color);

The function ga win quad pastes a quad on the screen. 0.0 is the left of the
screen and 1.0 is the right. 0.0 is the bottom of the scree and 1.0 is the top.
This function takes a texture (string), and the texture will be displayed as a
rectangle on the screen.

The function ga win quad two is just like ga win quad except the bottom
half of the quad will have texture tex1 and the top half will have texture tex2.
The number frac determines how much is tex1 verses tex2. If frac is 0.0, then
the quad will be entirely tex2. If frac is 1.0, then the quad will be entirely tex1.

The function ga win quad color is just like ga win quad except instead of
drawing a textured quad, it draws a quad that is just one solid color.

void ga_win_txt(

int wid, float min_x, float min_y, string txt);

void ga_win_txt_alpha_bg(

int wid, float min_x, float max_x, float alpha, string txt);

void ga_win_txt_center(

int wid, float min_y, string txt);

void ga_win_txt_center_at_bg(

int wid, float center_x, float min_y, string txt);

The function ga win txt puts text on the screen. The lower left hand corner
of the text is at the position (min x, min y). The character width and height is
set by the function ga win set char size.

The function ga win txt alpha bg is just like ga win txt except that it also
places a background directly behind the text being drawn. The alpha is for
the text itself. The background color and alpha2 will be used to make a quad
behind the text being drawn.

The function ga win txt center puts text whose x component is in the center
of the screen. The minimum y value of the text is given by min y.

While the function ga win txt center puts text whose x component is in the
center of the screen, the function ga win txt center at bg puts text whose x
center is given by the center x variable. Also, this function draws a background
behind the text in an analogous way that ga win txt alpha bg does.

CHAPTER 17. THE GAME LUA-TO-C API: WINDOWS 205

17.6 Text Box

void ga_win_txt_box(

int wid, string txt, bool go_back_msg);

The function will render a “text box” in the center of the screen with the
given text. If ga back msg is true, then at the bottom of the screen there will
be a message asking of the player would like to “go back” by pressing either
Escape or F.

17.7 Small List Widget

void ga_win_widget_small_list_start(

int wid, float min_y, float max_y,

float char_width, float char_height,

Vector txt_color, LIST);

void ga_win_widget_small_list_set_use_nums(bool value);

int ga_win_widget_small_list_process_input(int wid);

string ga_win_widget_small_list_get_entry(int wid, int index);

A small list widget is a list of options that the player can choose from. These
are presented on the screen. All options show up on the screen (none are hidden,
and no scrolling is required).

The function ga win widget small list start function creates a small list wid-
get, and should probably be called in the on start function of a window lua
script. Here is an example (in a window script):

function p.on_start(wid)

local min_y = 0.3

local max_y = 0.7

local char_w = 0.03

local char_h = 0.06

local color = {x=0.0, y=0.5, z=0.5}

local options = {

"NEW GAME",

"LOAD GAME",

"SAVE GAME",

"PLAY TETRIS",

"EXIT"}

ga_win_widget_small_list_start(

wid, min_y, max_y, char_w, char_h,

color, options)

The function ga win widget small list set use nums specifies whether the user
can press number keys to quickly select an option.

The function ga win widget small list process input allows the widget to
process input. The function returns a positive integer if and only if an item

CHAPTER 17. THE GAME LUA-TO-C API: WINDOWS 206

has been selected from the list. For example, continuing our example from
above, if this function returns 2, then the selected option is ”LOAD GAME”.

Every entry in the list is given a number. The first entry is given number 1,
the next is given number 2, etc. The function ga win widget small list get entry
returns the name of the entry with the given number.

17.8 Text Input Widget

void ga_win_widget_text_input_start(

int wid, float min_y, float char_width, float chat_height);

string ga_win_widget_text_input_process_input(int wid);

string ga_win_widget_text_input_get_text();

string ga_win_widget_text_input_set_enable_enter(bool value);

The text input widget is a simple widget for the user to enter a line of text.
The function ga_win_widget_text_input_start creates the text input wid-

get. Note that the min_y argument specifies the minimum y value of the text
input widget.

The function ga_win_widget_text_input_process_input processes all key-
board input to the widget. If this function returns a non-empty string, then that
is the string that was inputted (the user typed something and then pressed en-
ter).

The function ga_win_widget_text_input_get_text gets the current con-
tents of the text input widget (as a string).

The function ga_win_widget_text_input_set_enable_enter specifies whether
pressing the enter key causes the “widget to flush” and have the text replaced
with the empty string. This is enabled by default.

17.9 Mutable Text Box Widget

void ga_win_widget_mutable_text_box_start(

int wid, float min_x, float max_x, float min_y, float max_y,

float char_width, float char_height,

Vector txt_color, string init_str);

string ga_win_widget_mutable_text_box_get_text(int wid);

void ga_win_widget_mutable_text_box_set_text(int wid, string str);

void ga_win_widget_mutable_text_box_end(int wid);

A mutable text box is like a normal text box except the user can modify the
text.

The function ga_win_widget_mutable_text_box_start creates the muta-
ble text box widget (for the given window). An initial string is specified.

The functions ga_win_widget_mutable_text_box_get_text gets the text
string for the mutable text box, and the function ga win widget mutable text box set text
sets the string.

CHAPTER 17. THE GAME LUA-TO-C API: WINDOWS 207

The function ga_win_widget_mutable_text_box_end destroys the mutable
text box widget of the given window. You can put this in the on_end function
of the associated window script (but you do not have to).

17.10 Cursor and Map Coordinates

Vector ga_win_get_cursor_pos(int wid);

Vector ga_win_get_cursor_diff(int wid);

void ga_win_scroll(int wid, float scroll_x, float scroll_y);

Vector ga_win_mtos(int wid, float x, float y);

Vector ga_win_stom(int wid, float x, float y);

void ga_win_set_scroll_bounds(

int wid, float min_x, float min_y, float max_x, float max_y);

Recall that (0.0, 0.0) is the lower left hand corner of the scree and (1.0, 1.0)
is the upper right hand corner.

The function ga win get cursor pos gets the position of the cursor. Note that
it is up to the user to render the cursor itself (probably by calling ga win quad).

The function ga win get cursor diff gets the difference in the cursor’s posi-
tion between this update and the previous update.

We want to encourage having windows which the user can scroll through.
Although the “screen coordinates” are always between (0.0,0.0) and (1.0,1.0) the
virtual coordinates (or “map coordinates”) can be in any range. Note that all
window rendering API functions use screen coordinates instead of map coordi-
nates. For map coordinates, we provide a minimal set of functions for converting
back and forth between screen coordinates and map coordinates. The function
ga win set scroll bounds sets the min and max map coordinates for the screen.
For example, calling

ga_win_set_scroll_bounds(

wid, 3.0, 3.0, 5.0, 5.0);

Will set the lower left screen location (0.0, 0.0) to be the map location (3.0,
3.0), and it will set the upper right screen location (1.0, 1.0) to be the map
location (5.0, 5.0).

Use ga win mtos to convert from map coordinates to screen coordinates. Use
ga win stom to convert from screen coordinates to map coordinates.

17.11 Keyboard and Mouse Input without the
WID

bool ga_win_key_down(string key);

bool ga_win_mouse_down(bool left);

bool ga_win_mouse_down2(int button);

CHAPTER 17. THE GAME LUA-TO-C API: WINDOWS 208

Use these functions to determine if the given key or mouse button is currently
down. Do not confuse this with a key or mouse button being “pressed”. The
ga_win_mouse_down tells you if the left or right mouse button is down (mouse
buttons 1 or 2). The function ga_win_mouse_down2 tells you whether the spec-
ified button is down, where the engine supports mouse buttons 1 through 5
inclusive. However we recommend using ga_win_mouse_down instead of the
function ga_win_mouse_down2, because some users only have mice with two
buttons.

Note that no WID is required! This allows you to call these functions at any
time. On the other hand, the function ga_win_key_pressed can only be called
at certain times during the game’s cycle.

17.12 Keyboard andMouse Input with theWID

bool ga_win_key_pressed(int wid, string key);

bool ga_win_mouse_pressed(int wid, bool left);

bool ga_win_mouse_pressed2(int wid, int button);

bool ga_win_mouse_released(int wid, bool left);

bool ga_win_mouse_released2(int wid, int button);

bool ga_win_mouse_wheel_up(int wid);

bool ga_win_mouse_wheel_down(int wid);

bool ga_win_key_pressed_or_spammed(

int wid, string key, float init_wait, float subsequent_wait);

The functions ga_win_key_pressed return whether a given key has been
pressed during this update phase. Here are some valid key strings:

"A" through "Z"

"0" through "9"

"F1" through "F12"

"ESC"

"ENTER"

"SPACE"

"LEFT"

"RIGHT"

"/"

To get more key names, open the console and run the command

bind dump_input_events

The functions ga_win_mouse_pressed and ga_win_mouse_released return
whether a mouse button (left or right) was pressed or released. The mouse
pressed 2 and mouse released 2 functions work for mouse buttons 1 through 5
inclusive (but again we do not recommend using them because some users only
have two buttons on their mice).

CHAPTER 17. THE GAME LUA-TO-C API: WINDOWS 209

The function ga_win_mouse_wheel_up returns whether on not the mouse
wheel was scrolled up (at least once). The function ga_win_mouse_wheel_down

is the same except for scrolling down.
The function ga_win_key_pressed_or_spammed is just a helper function.

Assuming the user is holding down a key, the function returns true after init_wait
many seconds since the key was pressed. Then, it returns true once each
subsequent_wait many seconds afterwards.

Chapter 18

Other Parts of Packages

At this point we have described all the folders inside a package. However, there
are also the following files in the package’s folder:

� binds.txt

� dependencies.txt

� globals.txt

� light params.txt

In this chapter we will describe these files.

18.1 binds.txt

The file binds.txt specifies what happens by default when players press and
release keys and mouse buttons. The way the input system works is that “input
events” are bound to “actions”. The file binds.txt declares actions and the input
event that by default binds to that action.

Actions have a primary and a secondary command. Most input events are
of type “downup”, which means that when the associated key is pressed, then
primary command of the associated action is executed. When the key is released,
the secondary command of the associated action is executed. Suppose the file
binds.txt is as follows:

PACKAGE_JUMP SPACE.downup "" "game_input jump ""

The first “” means that the command has the empty string as a “nickname”.
The nickname of an action can be helpful for when the user wants to rebind
actions. Note that the player could, for example, bind E.downup to the PACK-
AGE JUMP action. Then when the player presses E the player will jump.

The “game input jump” is the primary command of the PACKAGE JUMP
action. So when the space bar is pressed, this command is executed. Note that

210

CHAPTER 18. OTHER PARTS OF PACKAGES 211

the game input jump command results in the top.game input function being
called with “jump” as the string argument. The secondary command of the
PACKAGE JUMP action is the empty string.

To summarize, the syntax of a line in the binds.txt file is the following:

PACKAGE_ACTION_NAME INPUT_EVENT NICKNAME PRIMARY_CMD SECONDARY_CMD

Let us give another example. Consider the action of moving forward, which
is usually bound to the W key. The PACKAGE ACTION NAME might be
something like “PACKAGE MOVE FORWARD”. Note: all action names de-
clared in binds.txt must start with “PACKAGE ”. Next, the INPUT EVENT
would be “w.downup”. The NICKNAME could be anything, so let us set it to
be “”. We can have the primary command be

"game_input \"move forward start\""

(including the surrounding quotation marks). So when the W key is pressed,
the function top.game input will be given the string “move forward start”.

We can have the secondary command be

"game_input \"move forward end\""

So when the W key is released, the function top.game input will be given the
string “move forward end”.

18.2 dependencies.txt

This is described in Section 1.4.

18.3 globals.txt

You can read how to set and get (global) environment variables in Section 16.8.
All global variables that are loaded and saved (each time the game is loaded or
saved) must be declared in the file “globals.txt”. The type of the variable must
be specified. Optionally an initial value can be set.

Here is an example of what the globals.txt file might look like:

b invisible false

i health 100

f player_height 1.7

v initial_velocity 0.0 0.0 0.0

s favorite_color "blue"

s last_town

Here the last town variable does not have an initial value, so it will be
initialized to the empty string. Similarly a vector without an initial value will
be set to (0.0, 0.0, 0.0). A float without an initial value will be set to 0.0. An
int without an initial value will be set to 0. A bool without an initial value will
be set to false.

CHAPTER 18. OTHER PARTS OF PACKAGES 212

18.4 light params.txt

This file holds “lightweight parameters” associated to the package. These may
be read before the package is fully loaded. The following parameters should be
defined in this file:

preferred_engine_version

version

chunk_width

The engine has a version, such as “1.01.09”. The format for the engine
version is “major.minor.patch”. If the preferred engine version of the package
does not match the actual engine version, there may be a warning.

Every saved game stores the engine version number of the engine during the
last time the saved game was played. If either the major or minor changes (if
the engine version is different from the one in the save file), then when loading
the package a warning message will be displayed saying that the engine version
has changed since the list time that package was played. However if only the
patch number changes then there will be no such warning.

The package also has its own version which is specified here in the version
variable. Every saved game stores this package version number of the package
during the last time the saved game was played. The format for the version
should should be “major.minor.patch”. Again if major or minor change, then a
warning message will be displayed. However if only the patch number changes
then there will be no such warning.

The chunk width specifies the width of each chunk. This must be an integer
between 2 and 16 inclusive.

Here is what light params.txt might look like:

preferred_engine_version = "1.01.09"

version = "1.01.09"

chunk_width = 16

	Introduction
	An Important Link
	Two Types of Packages
	Your Package
	dependencies.txt (Mandatory)
	Dependencies Example
	Mods and a Simple Texture Pack Example
	The file About/install_dir.txt (Mandatory)
	The file About/mod_for.txt (Mandatory)
	About/about.txt and About/thumbnail.jpg
	Subdirectories
	Errors (causing the program to exit)
	System Errors
	Hard User Errors
	Soft User Errors

	Lua-to-C API's
	Chunk Generation API
	Initialization API
	Game API

	Textures, Meshes, and Sounds
	Textures
	Meshes
	Sounds

	Block Lua Scripts Part 1: Intro and Some Chunk Creation
	The WorldNodes Directory
	WorldNodes/StartingConfig
	WorldNodes/Nodes
	WorldNodes/Helpers

	Block Naming Conventions
	The 3 Necessary Functions
	Function #1: p.__get_is_solid
	Function #2: p.__get_tex
	Function #3: p.__main
	What Does the ``p.'' Mean?
	Omitting the ``block_'' prefix for a block type
	What does the double underscore mean?

	The clear_all Function
	Basic Block Functions
	set_default_block
	clear_blocks
	set_pos
	get_pos

	Pseudo Random Functions
	srand
	randf
	randi

	Getting Chunk Generation Input
	Generating Pseudo Random Seeds
	seed_normal
	seed_nearby
	seed_xy, seed_xz, seed_yz
	_chop type seed functions
	seed_from_last_of_type

	Blue Type Functions
	Block Variables
	Environment Rects
	add_env_rect

	Basic Entities
	add_bent
	add_bent_i
	add_bent_s
	bent_set_param_i
	bent_set_param_s

	Moving Entities
	add_ment
	ment_start
	ment_set_b, ment_set_i, ment_set_f, ment_set_v, ment_set_s
	ment_end

	Block Lua Scripts Part 2: More Chunk Creation
	The Full Chunk Generation Lua-to-C API
	Getting and Setting Chunk Variables
	More Block Functions
	create_rect
	create_sprinkles

	Exotic Block Functions: Mazes
	Creating a Maze
	Basic Querying of the Maze
	Example
	More Querying of the Maze: Part 1
	More Querying of the Maze: Part 2

	Exotic Block Functions: Caves
	Cave Creation
	Querying the Caves: Part 1
	Example
	Querying the Caves: Part 2

	Block Types
	Xar Chunk Generation
	Debugging
	print
	exit
	dump_lua_env

	Block Lua Scripts Part 3: Type Init Functions
	More Block Lua Module Functions
	p.__type_init
	p.__get_is_solid
	p.__get_is_solid_physically, etc
	p.__get_is_solid_visibly_glass
	p.__get_tex_x_pos, p.__get_tex_x_neg, etc
	p.__get_inv_tex_x_pos, p.__get_inv_tex_x_neg, etc

	Block Lua Scripts Part 4: Game Functions (Auxiliary Block Functions)
	Even More Block Lua Module Functions
	__on_close
	__on_adj_block_changed
	__change_to
	__get_can_use
	__get_use_msg
	__on_use
	__on_use2
	__on_chunk_update

	STD Lua Chunk Generation Helpers
	More Block Functions
	std.create_center
	std.create_tube
	std.create_half_tube
	std.create_edges
	std.create_shell
	std.create_2x2_door

	In Game Tools
	The Path Command
	The Script Command
	The Gendoc Command

	Coordinates
	The Chunk Tree (and the Active Chunk Tree)
	Viewer Centric Position
	Ways to describe the position of a chunk
	Ways to describe the position of a block
	chunk path
	level + vcp
	chunk id

	Level and local positions (for vectors)
	Local positions
	Level positions (LP)

	Block Positions (BP) and Local Block Positions (LBP)
	Local Block Positions (LBP)
	Block Positions (BP)

	Environment Rect Lua Scripts
	Environment Rect Lua Script Module Functions
	p.__on_touch

	Disclaimer

	Basic Entity Lua Scripts
	Initialization BEnt Script Functions
	Game BEnt Script Functions
	Initialization Functions
	p.__get_mesh
	p.__get_mesh2
	p.__get_pulsates
	p.__get_scale
	p.__get_touch_dist

	Game Functions
	p.__on_touch
	p.__get_can_use
	p.__get_use_msg
	p.__on_use
	p.__on_use2
	p.__on_render

	An example

	Moving Entity Lua Scripts
	Roaming vs Non-Roaming Moving Entities
	Type IDs, Instance IDs, and Code IDs
	Initialization MEnt Script Functions
	Game MEnt Script Functions
	__type_init
	__on_add_to_live_world
	__on_update
	__on_alarm
	__on_die
	__on_too_fine
	__on_block_hit
	__on_block_hit_nonfertile
	__on_ment_hit
	__on_level_travel
	__on_closest
	__get_can_use
	__get_use_msg
	__on_use
	__on_use2
	__on_render

	Moving Entity Vars Overview
	Static variables
	Revert lengths
	Built-in variables

	List of all moving entity built-in vars
	Explanation of all moving entity built-in vars
	__disable_saving
	__from_world_gen
	__grounded
	__grounded_offset
	__grounded_offset_old
	__ttl, __ttl_grounded, __game_end_time
	__respawn_length
	__add_to_live_world_time
	__extra_min_levels, __extra_max_levels
	__start_level, __min_level, __max_level
	__level, __chunk_id
	__offset, __offset_old
	__vel
	__mesh
	__alpha
	__tex_override
	__min_render_dist, __max_render_dist
	 __max_screen_size, __max_screen_size_time_len
	__team_id_source, __team_id_target
	__collides
	__solid_wrt_player
	__point_block_correct and __ment_correct
	__radius, __radius_lvlinv
	__homing, etc
	__gas_cloud_period, etc
	__turn_speed, __turn_towards_player, __turning_disabled
	__mesh_fixed_frame, __mesh_fixed_frame_vX
	__towards_viewerXXX and __dist_to_viewerXXX
	__death_animXXX

	Window Lua Scripts
	Introduction
	Window IDs (WIDs)
	Stacks vs Sets

	Main Menu Windows
	p.__get_name
	p.__on_start
	p.__on_end
	p.__process_input
	p.__render
	p.__update_always
	An Example

	Game Windows
	HUD Windows

	Game Lua Scripts
	Introduction
	All top.lua Module Functions
	top.__new_game
	top.__load_game
	top.__reboot_game
	top.__update
	top.__update_passive
	top.__update_discrete_pre
	top.__update_discrete_post
	top.__game_input
	top.__game_input_get_all_cmds
	top.__game_input_get_help_str
	top.__killed_player
	top.__respawn_player
	other.__load_game_early
	other.__load_game
	The order in which load_game functions are called
	other.__update
	other.__update_passive
	other.__update_discrete_pre and post
	other.__render_augmented

	The Initialization Lua-to-C API
	The Full Initialization Lua-to-C API
	Moving Entity (Type) Initialization Functions
	ia_ment_new_var_XXX
	ia_ment_new_var_XXX_perm
	ia_ment_new_static_var_XXX
	ia_ment_set_builtin_var_XXX
	ia_ment_set_var_saving

	Block (Type) Initialization Functions
	ia_block_new_var_XXX
	ia_block_set_builtin_var_XXX
	ia_block_new_static_var_XXX

	Block Stacks
	Ephemeral block variables

	The Game Lua-to-C API
	The 6 Directions and 3 Axes
	The Full Game Lua-to-C API
	Game API: Program Level Functions
	Pushing and popping the debug stack

	Game API: Returning Values From a Function
	Game API: Time
	Game API: Pseudo Random Functions
	Core random functions
	Seeds associated to chunks

	Game API: Env Vars: Globals
	Getting env globals
	Setting env globals

	Game API: Env Vars: System Vars
	Game API: Package State Vars
	Game API: Dynamic Vars
	Testing if a dynamic variable exists
	Creating dynamic variables
	Getting dynamic variables
	Setting dynamic variables
	Removing dynamic variables
	Iterating over dynamic variables
	Dumping dynamic variables

	Game API: Textures
	Game API: Sounds
	Game API: Input Binds
	Game API: Meshes
	Game API: Game Related
	ga_ga_get_package_name
	ga_ga_is_cheating_enabled
	Hardcore mode
	ga_genesis
	ga_kill_player

	Game API: Use and Look Objects
	Game API: System HUD Related
	Game API: Moving The Player Through Chunk Tree
	Game API: Exploration
	Game API: Windows (Part 1)
	Game API: Viewer Queries
	Game API: Basic Entities
	Getting and setting basic entities
	ga_bent_sphere_query
	ga_search_for_bent_in_chunk

	Game API: Moving Entities (type)
	Game API: Moving Entities (instance)
	Creating a moving entity
	Getting moving entity variables
	Testing if a variable exists
	Changing the revert length of a variable
	Setting moving entity variables
	Inst ID and code ID
	Testing if a moving entity exists
	Removing a moving entity
	Getting the type string of a moving entity
	Getting the level position
	Getting the starting level level position
	Getting the level
	Getting the level
	Getting the radius
	Dumping a moving entity
	Sphere query
	Alarms
	Dumping all moving entities

	Game API: Particles
	Adding a single particle
	Adding a spherical explosion of particles
	Adding a line of particles
	Adding a ring of particles

	Game API: Blocks (type)
	Getting information about a block type
	Listing block types

	Game API: Blocks (instance)
	Miscellaneous block functions
	Changing a block
	Getting block variables

	Setting block variables
	Block variables example
	The most common block type
	Searching for blocks

	Game API: Respawn Point and Waypoints
	Respawn point
	Waypoints

	Game API: Coordinates: Blocks and Chunks
	base/Game/std.lua
	From chunk id
	To chunk id
	Converting from lbp to bp
	Converting between vcp and bp
	Chunk id to parent chunk id
	Block position to parent block position
	Block position to parent vcp
	Block position to parent chunk id
	Block position to path
	Block position to lbp
	Block coordinates example

	Game API: Coordinates: Vectors
	To level position
	Converting from one level to another
	Finest chunk containing point

	Game API: Math
	Game API: Movement and Physics
	Setting the camera position
	Moving
	Gravity
	Setting the body type
	The character model

	Game API: Visibility
	Game API: Rendering
	Game API: Windows (Part 2)
	Game API: Rebooting the Game
	Game API: File IO
	Game API: Accessibility
	Game API: Text and Strings
	Game API: Windows Clipboard

	The Game Lua-to-C API: Windows
	The API
	The Window ID (WID)
	Window management
	Setting Foreground and Background Params
	Screen Elements
	Text Box
	Small List Widget
	Text Input Widget
	Mutable Text Box Widget
	Cursor and Map Coordinates
	Keyboard and Mouse Input without the WID
	Keyboard and Mouse Input with the WID

	Other Parts of Packages
	binds.txt
	dependencies.txt
	globals.txt
	light_params.txt

