
Fractal Block World 1.01.13

Creation Manual

by Dan Hathaway

October 29, 2023

Contents

1 Introduction 9
1.1 Your Package . 9
1.2 Dependencies . 9
1.3 Subdirectories . 10
1.4 Errors (causing the program to exit) 11

1.4.1 System Errors . 11
1.4.2 Hard User Errors . 11
1.4.3 Soft User Errors . 11

1.5 Lua-to-C API’s . 11
1.5.1 Chunk Generation API 12
1.5.2 Initialization API . 12
1.5.3 Game API . 12

2 Textures, Meshes, and Sounds 13
2.1 Textures . 13
2.2 Meshes . 13
2.3 Sounds . 14

3 Block Lua Scripts Part 1 15
3.1 The WorldNodes Directory . 15

3.1.1 WorldNodes/StartingConfig 15
3.1.2 WorldNodes/Nodes . 16
3.1.3 WorldNodes/Helpers . 18

3.2 Block Naming Conventions . 18
3.3 The 3 Necessary Functions . 19

3.3.1 Function #1: p.get is solid 19
3.3.2 Function #2: p.get tex 19
3.3.3 Function #3: p.main . 20
3.3.4 What Does the “p.” Mean? 20

3.4 The clear all Function . 21
3.5 Basic Block Functions . 21

3.5.1 set default block . 21
3.5.2 clear blocks . 22
3.5.3 set pos . 22

1

CONTENTS 2

3.5.4 get pos . 23
3.6 Pseudo Random Functions . 23

3.6.1 srand . 23
3.6.2 randf . 23
3.6.3 randi . 24

3.7 Getting Chunk Generation Input 24
3.8 Generating Pseudo Random Seeds 26

3.8.1 seed normal . 26
3.8.2 seed nearby . 27
3.8.3 seed xy, seed xz, seed yz 28
3.8.4 chop type seed functions 28
3.8.5 seed from last of type . 28

3.9 Blue Type Functions . 29
3.10 Environment Rects . 30

3.10.1 add env rect . 30
3.11 Basic Entities . 30

3.11.1 add bent . 30
3.11.2 add bent i . 31
3.11.3 add bent s . 31
3.11.4 bent set param i . 32
3.11.5 bent set param s . 32

3.12 Moving Entities . 32
3.12.1 add ment . 32
3.12.2 add ment f . 32
3.12.3 ment start . 32
3.12.4 ment set b, ment set i, ment set f, ment set v, ment set s 33
3.12.5 ment end . 33

4 Block Lua Scripts Part 2 34
4.1 The Full Chunk Generation Lua-to-C API 34
4.2 More Block Functions . 38

4.2.1 create rect . 38
4.2.2 create sprinkles . 38

4.3 Exotic Block Functions: Mazes 39
4.3.1 Creating a Maze . 39
4.3.2 Basic Querying of the Maze 39
4.3.3 Example . 40
4.3.4 More Querying of the Maze: Part 1 41
4.3.5 More Querying of the Maze: Part 2 42

4.4 Exotic Block Functions: Caves 42
4.4.1 Cave Creation . 42
4.4.2 Querying the Caves: Part 1 44
4.4.3 Example . 44
4.4.4 Querying the Caves: Part 2 45

4.5 Debugging . 46
4.5.1 print . 46

CONTENTS 3

4.5.2 exit . 46
4.5.3 dump lua env . 47

5 Block Lua Scripts Part 3 48
5.1 More Block Lua Module Functions 48
5.2 Other Module Functions in Block Lua Scripts 49
5.3 Lua-To-C API’s . 49
5.4 p.get is solid . 49
5.5 p.get is solid physically, etc . 50
5.6 p.get is solid visibly glass . 51
5.7 p.get tex x pos, p.get tex x neg, etc 52
5.8 p.get inv tex x pos, p.get inv tex x neg, etc 53

6 Block Lua Scripts Part 4 55
6.1 Even More Block Lua Module Functions 55
6.2 on close . 55
6.3 on adj block changed . 56

7 STD Chunk Generation Helpers 57
7.1 More Block Functions . 57

7.1.1 std.create center . 57
7.1.2 std.create tube . 58
7.1.3 std.create half tube . 58
7.1.4 std.create edges . 58
7.1.5 std.create shell . 58
7.1.6 std.create 2x2 door . 59

8 In Game Tools 60
8.1 The Path Command . 60
8.2 The Script Command . 60

9 Coordinates 62
9.1 The Chunk Tree (and the Active Chunk Tree) 62
9.2 Viewer Centric Position . 62
9.3 Ways to describe the position of a chunk 63

9.3.1 chunk path . 63
9.3.2 level + vcp . 64
9.3.3 chunk id . 64

9.4 Level and local positions (for vectors) 64
9.4.1 Local positions . 64
9.4.2 Level positions (LP) . 64

9.5 Block Positions (BP) and Local Block Positions (LBP) 65
9.5.1 Local Block Positions (LBP) 65
9.5.2 Block Positions (BP) . 65

CONTENTS 4

10 Environment Rect Lua Scripts 67
10.1 Environment Rect Lua Script Module Functions 67

10.1.1 p.on touch . 68
10.2 Disclaimer . 68

11 Basic Entity Lua Scripts 69
11.1 Basic Entity Lua Script Module Functions 69
11.2 Initialization Functions . 70

11.2.1 p.get mesh . 70
11.2.2 p.get mesh2 . 70
11.2.3 p.get pulsates . 70
11.2.4 p.get scale . 71
11.2.5 p.get touch dist . 71

11.3 Game Functions . 71
11.3.1 p.on touch . 71
11.3.2 p.get can use . 72
11.3.3 p.get use msg . 72
11.3.4 p.on use . 73
11.3.5 p.on telekinesis . 73

11.4 An example . 73

12 Moving Entity Lua Scripts 75
12.1 Roaming vs Non-Roaming Moving Entities 75
12.2 Type IDs, Instance IDs, and Code IDs 75
12.3 Moving Entity Lua Script Module Functions 76

12.3.1 type init . 77
12.3.2 on add to live world . 77
12.3.3 on update . 78
12.3.4 on alarm . 78
12.3.5 on die . 78
12.3.6 on too fine . 79
12.3.7 on block hit . 79
12.3.8 on ment hit . 80
12.3.9 on level travel . 81
12.3.10on closest . 82
12.3.11get can use . 82
12.3.12get use msg . 82
12.3.13on use . 83

12.4 Moving Entity Vars Overview . 83
12.4.1 Static variables . 84
12.4.2 Revert lengths . 84
12.4.3 Built-in variables . 84

12.5 List of all moving entity built-in vars 84
12.6 Explanation of all moving entity built-in vars 86

12.6.1 disable saving . 86
12.6.2 from world gen . 86

CONTENTS 5

12.6.3 ttl, ttl grounded, game end time 86
12.6.4 respawn length . 87
12.6.5 extra min levels, extra max levels 87
12.6.6 start level, min level, max level 88
12.6.7 level, chunk id . 88
12.6.8 offset, offset old . 88
12.6.9 vel . 88
12.6.10 mesh . 89
12.6.11 team id source, team id target 89
12.6.12 solid wrt player, collides 89
12.6.13 radius, radius lvlinv 90
12.6.14 tex override . 90
12.6.15 homing, homing target 90
12.6.16 turn speed, turn towards player, turning disabled . . 91
12.6.17 mesh fixed frame, mesh fixed frame vX 91
12.6.18 towards viewerXXX and dist to viewerXXX 91
12.6.19 death animXXX . 92

13 Window Lua Scripts 93
13.1 Introduction . 93

13.1.1 Window IDs (WIDs) . 93
13.1.2 Stacks vs Sets . 93

13.2 Main Menu Windows . 94
13.2.1 p.on start . 94
13.2.2 p.on end . 94
13.2.3 p.process input . 95
13.2.4 p.render . 95
13.2.5 An Example . 96

13.3 Game Windows . 97
13.4 HUD Windows . 97

14 Game Lua Scripts 98
14.1 Introduction . 98
14.2 All top.lua Module Functions . 98
14.3 top.new game . 98
14.4 top.load game . 99
14.5 top.update . 99
14.6 top.update passive . 100
14.7 top.update discrete pre . 100
14.8 top.update discrete post . 100
14.9 top.game input . 100
14.10top.killed player . 101
14.11top.respawn player . 101

CONTENTS 6

15 The Initialization Lua-to-C API 102
15.1 The Full Initialization Lua-to-C API 102
15.2 Moving Entity (Type) Initialization Functions 103

15.2.1 ia ment new var XXX . 104
15.2.2 ia ment new static var XXX 104
15.2.3 ia ment set builtin var XXX 105
15.2.4 ia ment set var saving . 105

15.3 Block (Type) Initialization Functions 106
15.3.1 ia block new var XXX . 106
15.3.2 ia block new static var XXX 107

15.4 Block Stacks . 107
15.4.1 Ephemeral block variables 108

16 The Game Lua-to-C API 109
16.1 The 6 Directions and 3 Axes . 109
16.2 The Full Game Lua-to-C API . 110
16.3 Game API: Program Level Functions 118
16.4 Game API: Returning Values From a Function 119
16.5 Game API: Time . 119
16.6 Game API: Pseudo Random Functions 120
16.7 Game API: Env Vars . 120
16.8 Game API: Sounds . 123
16.9 Game API: Game Stuff . 123

16.9.1 ga genesis . 123
16.9.2 ga kill player . 124

16.10Game API: System HUD Related 124
16.11Game API: Moving Through Chunk Tree 124
16.12Game API: Windows (Part 1) . 125
16.13Game API: Viewer Queries . 126
16.14Game API: Basic Entities . 127
16.15Game API: Moving Entities (type) 128
16.16Game API: Moving Entities (inst) 128

16.16.1 Creating a moving entity 128
16.16.2 Getting moving entity variables 129
16.16.3 Testing is a variable exists and is true 129
16.16.4 Changing the revert length of a variable 129
16.16.5 Setting moving entity variables 129
16.16.6 Inst ID and code ID . 130
16.16.7 Testing if a moving entity exists 130
16.16.8 Removing a moving entity 130
16.16.9 Getting the type string of a moving entity 130
16.16.10 Getting the level position 130
16.16.11 Getting the starting level level position 131
16.16.12 Dumping a moving entity 131
16.16.13 Sphere query . 131
16.16.14 Alarms . 131

CONTENTS 7

16.16.15 Dumping all moving entities 132
16.17Game API: Particles . 132

16.17.1Adding a single particle 132
16.17.2Adding a spherical explosion of particles 133
16.17.3Adding a line of particles 133
16.17.4Adding a ring of particles 134

16.18Game API: Blocks . 134
16.18.1Local block position functions 134
16.18.2Miscellaneous block functions 135
16.18.3Changing a block . 135
16.18.4Block variables . 135
16.18.5Block types . 136

16.19Game API: Respawn Point and Waypoints 137
16.19.1Respawn point . 137
16.19.2Waypoints . 137

16.20Game API: Coordinates . 137
16.20.1From chunk id . 137
16.20.2To chunk id . 137
16.20.3Converting from one level to another 138
16.20.4The block position of a chunk 138
16.20.5base/Game/std.lua . 138

16.21Game API: Math . 139
16.22Game API: Movement and Physics 139

16.22.1Moving . 139
16.22.2Gravity . 139
16.22.3Setting the body type . 139
16.22.4The character model . 140

16.23Visibility . 140
16.24Game API: Windows (Part 2) . 141
16.25Game API: Deprecate Eventually 141

17 The Game Lua-to-C API: Windows 142
17.1 The API . 142
17.2 The Window ID (WID) . 143
17.3 Setting Foreground and Background Params 144
17.4 Screen Elements . 144
17.5 Text Box . 145
17.6 Small List Widget . 145
17.7 Text Input Widget . 146
17.8 Mutable Text Box Widget . 147
17.9 Cursor and Map Coordinates . 147
17.10Keyboard and Mouse Input . 148

CONTENTS 8

18 Other Parts of Packages 149
18.1 binds.txt . 149
18.2 dependencies.txt . 150
18.3 globals.txt . 150
18.4 light params.txt . 151

Chapter 1

Introduction

1.1 Your Package

Within the root folder of the Fractal Block World program, there is a folder
called Data. Within that there is a folder called Packages. To create your own
world, you can start by copying the folder Data/Packages/blank to something
like Data/Packages/myworld.

For safety, never modify the blank package.

You should also never modify the “base” package.
When you create a new game, you can now select the “myworld” package.

You can modify the relevant files within the “myworld” directory and its sub-
directories to create your world. For the rest of this chapter, we assume that
your package is called “myworld”.

Ideally all but a select few of the script .lua files within a package will have
a prefix of the package name. So for example in the blank package, most of
the script files start with “blank”. So when you copy the blank package to
myworld, for cleanliness you could replace each instance of the word “blank”
in the lua files with “myworld”. Certain files are required to be named certain
things because they are entry points. For example, “Game/top.lua”.

1.2 Dependencies

Your package can depend on other packages, as specified by the dependencies.txt
file in the myworld directory.

While the system supports complicated dependencies, it is best to simply
only depend on the “base” package. So the dependencies.txt file should read as
follows:

wf base

9

CHAPTER 1. INTRODUCTION 10

Note: wf stands for “well-founded”. If X is a well-founded dependency of
the current package, then the package X cannot depend on the current package.
Moreover, it we look at all well-founded package dependencies of the current
package, then the dependencies of these packages with each other should form
a directed acyclic graph.

Suppose the current package depends on the packages X and Y, but X and
Y depend on each other. Then in dependencies.txt we would have

nonwf X

nonwf Y

The X/dependencies.txt file would be

nonwf Y

and the Y/dependencies.txt file would be

nonwf X

However, we consider this practice of packages depending on each over to be
bad and it should be avoided.

To make like simple, only depend on the base package.

1.3 Subdirectories

Within Data/Packages/myworld there are the following directories:

� BasicEnts

� EnvRects

� Game

� Meshes

� MovingEnts

� Sounds

� Textures

� WorldNodes

The directory WorldNodes is where the block data of the world is stored.
Within Data/Packages/myworld there are several files not in directories:

� binds.txt

� dependencies.txt

� globals.txt

CHAPTER 1. INTRODUCTION 11

The file “binds.txt” specifies what events occur when various keyboard keys or
mouse buttons are pressed.

The file “dependencies.txt” was described in the previous section.
The file “globals.txt” declares game variables that the lua scripts are able

to modify and access.

1.4 Errors (causing the program to exit)

The program can exit from 3 types of errors: system errors, hard user errors,
and soft user errors.

1.4.1 System Errors

System errors are generally due to bugs in the program. Usually these result in
the program exiting without displaying an error message. You can go to the file
stdout.txt and go to the end to see what was the error.

1.4.2 Hard User Errors

Hard user errors are caused by bad data given to the engine. “Hard” means
the program will always exit when such an error is encountered. An error
which is detected while loading a package is generally a hard user error (as
opposed to a soft one). For example, a file not being found that was listed in
“sound names.txt” (or “texture names.txt” or “mesh names.txt”) is a hard user
error. Also, if the “get tex” function of a chunk generation Lua module returns
a texture name that does not exist, this is a hard user error.

1.4.3 Soft User Errors

Soft user errors, like hard user errors, are also caused by bad data given to the
engine. Soft user errors are often more difficult to fix than hard ones. When
the program encounters a soft user error, the program will exit if and only if
the environment variable “engine.exit on error” is set to true. End users should
play the game with engine.exit on error set to false, whereas developers should
set this to true to help to find bugs.

1.5 Lua-to-C API’s

There are several Lua Api’s that various Lua scripts can call. These API func-
tions are implemented on the C++ side of this program. Here are all the Lua
API’s:

� Chunk Generation API

� Initialization API

� Game API

CHAPTER 1. INTRODUCTION 12

1.5.1 Chunk Generation API

The Chunk Generation API can only be used by

� Block Lua Scripts (WorldNodes/Nodes). More specifically, only by the
“main” function of Block Lua Scripts.

� Helper Functions for Chunk Generation (WorldNodes/Helpers).

1.5.2 Initialization API

The Initialization API is only available when a package is being loaded. For
example, a moving entity specified by the Lua script dragon.lua might call
functions in this initialization API to set various parameters for dragon type
moving entities.

Functions part of the Initialization API start with ia

1.5.3 Game API

The Game API can be used by

� Basic Entites (in BasicEnts/)

� Environment Rects (in EnvRects)

� Game Lua Scripts (modules) (in Game/)

� Moving Entities (in MovingEnts/)

� Windows (in Windows/).

Functions part of the Game API start with ga

Chapter 2

Textures, Meshes, and
Sounds

2.1 Textures

The directory of your package has a subdirectory called “Textures”. In that
directory, there must be a file called “texture names.txt”. This file lists the
textures files that are part of the package, and assigns a name to each one.

If a name already exists in the system, then the old texture with that name
will be replaced with the new one with that name.

Here is an example of what the file “texture names.txt” can look like:

Here are some textures.

crosshair a cool_crosshair.tga

block_grass _ grass.jpg

block_iron _ FromDad/iron.jpg

Empty lines, or lines that start with “#”, are comment lines. Every other line
should have exactly 3 strings. The first is the NAME of the texture. This
is how the rest of the game will refer to the texture. The third string is the
FILENAME. This should be a path relative to the directory that contains the
“texture names.txt” file. For example, in the example we have given, the file
“grass.jpg” must be in the same directory as “texture names.txt”. The second
string tells whether the texture has alpha (a) or does not (). If the texture has
alpha, the file type must be “.tga”. If not, the file type must be “.jpg”. It is
probably a good idea for textures to always have a width that is a multiple of
4. The game expects some textures to have alpha and others to not.

2.2 Meshes

The file Meshes/mesh names.txt is a list of triples. The first element of the triple
is the name of the mesh. This is how the rest of the system refers to the mesh.

13

CHAPTER 2. TEXTURES, MESHES, AND SOUNDS 14

The second element is the texture name (listed in Textures/texture names.txt).
The third element is the file path of a wavefront.obj file relative to the Meshes
directory. Here is an example of what Meshes/mesh names.txt might look like:

health_10 health medium_box.obj

health_25 health large_box.obj

Here we see that there are two meshes, named “health 10” and “health 25”.
Both meshes use the texture with the name “health”. One mesh uses the wave-
front.obj file medium box.obj whereas the other mesh uses the wavefront.obj
file large box.obj.

All mesh files must be of the format “wavefront.obj”. See the Internet for
this file format specification. Note: technically the file format supports some
weird things, but the Fractal Block World program only supports the basic stuff.

2.3 Sounds

Sounds are declared in the file “Sounds/sound names.txt”. This is similar
to “Textures/texture names.txt” and to “Meshes/mesh names.txt”. The file
“sound names.txt” might look like:

bullet bullet.ogg

laser laser.ogg

The first string is the NAME of the sound. The second string is the FILENAME
of the sound file. The only file type supported for sounds for this program is
“Ogg Vorbis”.

Chapter 3

Block Lua Scripts Part 1

This chapter will discuss the basics of creating the geometry of your own world.
Specifically, we will mainly discuss how to create the chunk generation aspects of
“Block Lua Scripts”. When a block is expanded into a chunk, a main function
of a Block Lua Scripts is called. These Block Lua Scripts are found in the
“WorldNodes/Nodes” directory.

The “main” function of these Block Lua Scripts have access to an API in-
tended for the creation of chunks: the Chunk Generation Lua-to-C API.
We will partially explain that API in this chapter, and complete the discussion
in Chapter 4.

These “main” functions of Block Lua Scripts also have access to files in

“WorldNodes/Helpers”.

In particular, the file

“base/WorldNodes/Helepers/std.lua”

has many usual functions that can be used from these Lua scripts. We describe
the functions in this “std.lua” file in Chapter 7.

3.1 The WorldNodes Directory

This chapter will be concerned with the WorldNodes subdirectory of your pack-
age.

3.1.1 WorldNodes/StartingConfig

When a player creates a new game, he selects which package to use. After that,
he selects his starting configuration. These starting configurations are specified
in the WorldNodes/StartingConfig directory. There should be one .txt file for
each starting configuration.

15

CHAPTER 3. BLOCK LUA SCRIPTS PART 1 16

Let’s say, for example, that there are two starting configurations. Then
the directory WorldNodes/StartingConfig should contain the files “1.txt” and
“2.txt”, and the following could be the contents of “1.txt”:

description "Default Starting Configuration"

root_node cave_world_top

player_offset 7.5 3 7.5

chunk_path 778_777

The line starting with “description” specifies the name of the starting configu-
ration, and that will appear in the menu when the player is selecting his starting
configuration.

The line starting “root name” specifies the block type of the root of the
world. That is, the world is a tree of chunks. The root chunk of the tree is
created first, and this process is determined by the name of the block type of
the root. In the example above, the following file must exist:

WorldNodes/Nodes/cave_world_top.lua

The line starting “player offset” specifies where the player starts within his
starting chunk. The offset should be a triple (x,y,z) such that x,y,z are all
between 0.0 and 16.0.

Finally chunk path specifies the chunk path of the chunk where the player
initially spawns. The format of the chunk path is a list of triples of hex characters
(for x,y,z) separated by underscores (with the exception that the empty path
is “EMPTY PATH”). To specify the chunk path, the easiest way is to play the
game and fly to the chunk you would like the starting position to be. Then open
the console (press ∼) and enter the command “path dump”. This will output
the chunk path of your current location to Output/path.txt. Open that file and
go to the line that starts “chunk path”. You can then copy that line into the
starting position file.

Additionally, the starting configuration file can have a line like as follows:

emergency_waypoint_path 778_777_c5f

This will set the “emergency waypoint” to be in the chunk with the specified
path. The player is always able to teleport to his emergency waypoint from
any other waypoint (without having to manually activate the emergency way-
point). It is also possible to add other built-in waypoints that are activated
from the beginning of a new game. This can be done by calling the functions
“ga add waypoint sloppy” and “ga add waypoint sloppy in only” from the file
“Game/top.lua” in the “new game” function.

3.1.2 WorldNodes/Nodes

Every block in the world has a type, which is represented by a string. This string
is the same as the name of the Block Lua Script for the block, without the .lua
at the end. When a block needs to turn into a chunk, the main function of

CHAPTER 3. BLOCK LUA SCRIPTS PART 1 17

the appropriate Block Lua Script is called in the WorldNodes/Nodes directory.
These scripts are “Lua Modules”. Each script must end with “.lua”.

For example, suppose there is a block of type “grass”. Then, when the block
needs to get subdivided into a chunk, the “main” function in the script

WorldNodes/Nodes/grass.lua

will be called. In general, if a block type is “X”, then its associated chunk
generation main function is the file “WorldNodes/Nodes/X.lua”. Here is what
the file “grass.lua” might look like:

-- Block type: "grass".

-- (Comment lines start with "--").

function p.get_is_solid()

return true

end

function p.get_tex()

return "green_dark"

end

function p.main()

set_default_block("r_green")

for x = 0,15 do

for y = 0,15 do

z = 15

set_pos(x,y,z,"grass2")

end

end

end

When a grass type block is expanded into a chunk, it is composed of solid r green
blocks, except for the top layer which consists of grass2 blocks. This example
will be explained more in the section “The 3 Necessary Functions”.

Note: the blocks defined in all packages that the current package depends
on are also available. For example, if the current package is called “myworld”
and it depends on the package “forestworld”, and if the file

Data/Packages/forestworld/WorldNodes/Nodes/big tree.lua

exists, then “big tree” is a block type that is available to the “myworld” package.
For this reason, if you are planning on other people using your package as a

dependency for their packages, then avoid common names for block types. That
is, “grass.lua” is a poor choice for the name of a chunk generation Lua script.
A better choice would be to prefix all block type names with your initials or
something like this. So, if your name is Robert Paulson, then you could name
the grass file “rp grass.lua”.

CHAPTER 3. BLOCK LUA SCRIPTS PART 1 18

3.1.3 WorldNodes/Helpers

You can define helper functions that can be used by any main function of Block
Lua Scripts. When a package is first loaded, all the scripts in the directory
“WorldNodes/Helpers” will be read. Specifically, a “lua state” is created by
processing all these scripts (but the code in the functions in these scripts is not
executed). Then, when the main function of a Block Lua Script is executed,
functions defined in the “Helpers” directory can be used.

For example, suppose there is a file called

WorldNodes/Helpers/my first helpers.lua

and it looks like this:

function p.put_iron_in_middle()

set_pos(7,7,7,"iron")

end

Now the main function of any chunk generation script can call the function

my first helpers.put iron in middle()

and the result will be to set the block at position (7,7,7) of the chunk to be of
type “iron”.

Note: the helper functions defined in all packages that the current package
depends on are also available. So, just like what was said about the names
of chunk generation scripts in the “WorldNodes/Nodes” directory, if you want
others to create packages which depend on your own package, the helper func-
tions that you define should probably by prefixed with something unique. So it
would be better for “my first helpers.lua” to be called “rp my first helpers.lua”
instead, if your name is Robert Paulson for example. But again, it is probably
better for user created packages to only depend on the “base” package.

3.2 Block Naming Conventions

Some blocks are solid and are subdivided into 16 by 16 by 16 blocks of the same
type. For example, consider the following chunk generation file “r concrete.lua”:

function get_is_solid() return true end

function get_tex() return "block_concrete" end

function main() set_default_block("r_concrete") end

When a type “r concrete” block is subdivided, it turns into 16 by 16 by 16
smaller “r concrete” blocks. For organization purposes, I would recommend
prefixing these types of blocks with “r ” (for “recursive”).

It is also convenient to have a file called “s.lua” (“s” for “solid”, and it is
easy to type). The file “s.lua” should be as follows:

CHAPTER 3. BLOCK LUA SCRIPTS PART 1 19

function get_is_solid() return true end

function get_tex() return "block_default" end

function main() set_default_block("s") end

Indeed, in Base/WorldNodes/Nodes there is such a file “s.lua”.
Or you could call it “solid”, totally up to you. It also makes sense to have

a file called “e.lua” (“e” for “empty”, and it is easy to type). The file “e.lua”
should be as follows:

function get_is_solid() return false end

function get_tex() return "" end

function main() set_default_block("e") end

In Base/WorldNodes/Nodes there is such a file “e.lua”.

3.3 The 3 Necessary Functions

Consider the file “WorldNodes/Nodes/grass.lua” presented in the section about
the directory “WorldNodes/Nodes”. This lua script is executed whenever a
“grass” type block needs to be subdivided to become a chunk. There are 3
functions defined in “grass”, and these 3 functions must be defined in every
Block Lua Script.

3.3.1 Function #1: p.get is solid

The first function is the function “p.get is solid”:

function p.get_is_solid()

return true

end

This function is called when the package is first loaded, NOT when a block of
type “grass” is being subdivided into a chunk. And so, this function does NOT
have access to the chunk generation API. This function should return either
“true” or “false”. If true, then the block is solid and it has a texture associated
to it. If false, then the block is empty (the player can move through it) and it
has no texture associated to it.

Right now solid means both physically solid (the player cannot move through
it) and visibly solid (the player cannot see through it). In the main Fractal Block
World game (Xar) there are some visibly invisible but physically solid blocks
and visa versa. Later we will talk about how to describe such blocks which are
physically solid but not visibly solid or visa versa.

3.3.2 Function #2: p.get tex

The second function is “p.get tex”:

CHAPTER 3. BLOCK LUA SCRIPTS PART 1 20

function p.get_tex()

return "green_dark"

end

Like “p.get is solid”, this function is called when the package is first loaded. It
should return a string which is the name of the texture associated to the block
type. If “p.get is solid” returns false, then the “p.get tex” function should either
not be defined or should return the empty string, like this:

function p.get_tex()

return ""

end

3.3.3 Function #3: p.main

The third and most important function that must be defined in each chunk
generation lua script is “p.main”. Again here is the main function in our example
“grass”:

function p.main()

set_default_block("r_green")

for x = 0,15 do

for y = 0,15 do

z = 15

set_pos(x,y,z,"grass2")

end

end

end

Unlike “p.get is solid” and “p.get tex”, this “p.main” function is called each
time a block of type “grass” is subdivided into a chunk. The first thing this
main function does is to call the built in function “set default block”. This
function will be described soon. Next, the function has two nested “for” loops
with the effect of setting the top block layer of the chunk to be “grass2” type
blocks. The rest of the blocks in the chunk are of type r green. The “set pos”
function will also be described soon.

There are various functions which can be called from the main function: Lua
functions built into the language, functions defined in scripts in WorldNodes/Helpers,
and functions in the Chunk Generation Lua API. For the rest of the chapter we
will describe part of the Chunk Generation Lua API. The rest of that API will
be covered in the chapter Chunk Generation Lua Scripts Part 2.

3.3.4 What Does the “p.” Mean?

When the Lua “module” X.lua is loaded into the program, the following two
lines will be prepended to X.lua:

X = {}

local p = X

CHAPTER 3. BLOCK LUA SCRIPTS PART 1 21

The modified file is then loaded into a Lua state L (that possibly other modules
have been loaded into). This results in the Lua state L having a new global
table with the name “X”. If the file “X.lua” defined a function “p.foo”, then in
the lua State L, the (global) table “X” will have the member “foo”.

It is not wise to try to maintain state in a Lua module using a global variable.
It is better to use functions like “get i” and “set i” which modify an environment
variable maintained by the engine. These functions are part of the Game Lua-
to-C API.

3.4 The clear all Function

void clear_all(string block_type);

This function clears all blocks, basic entities, moving entities, environment
rectangles, etc. The default block type will become block type.

3.5 Basic Block Functions

One of the most important tasks the main function has to do is to specify the
blocks in the chunk. For example, here is a main function that makes all the
blocks be of “air” type, except one block which is of type “iron”:

function p.main()

set_default_block("air")

set_pos(7,7,7,"iron")

end

3.5.1 set default block

void set_default_block(string block_type);

You should ALWAYS call the “set default block” function at the beginning
of the main function. If you forget to call the set default block function, then
the default block type will be set to a block which is purple with yellow letters
which read as follows:

default block not set.

The function takes one argument, which is the block type to initially use
for the 16 x 16 x 16 blocks within the chunk (as a string). Then, later calls to
“set pos” can change individual blocks.

Note: the implementation of the program stores the blocks within a chunk
in a sparse way. Specifically, the default block type is stored, and every block
in the chunk not of that default type is also stored.

Warning: a call to “set default block” does not replace any blocks created
by “set block” calls. For example, consider the following main function:

CHAPTER 3. BLOCK LUA SCRIPTS PART 1 22

function p.main()

set_default_block("air1")

set_pos(7,7,7,"iron")

set_default_block("air2")

end

You might think that the second call to “set default block” will replace the
iron block with an air2 block. This is NOT the case. The final block state
will be that there is an iron block at position (7,7,7), and every other block is
of type air2. To override all blocks in the chunk to be of type “foo”, use the
create rect(“foo”, 0,0,0, 15,15,15) function or the clear blocks(“foo”) function
described in the next section.

3.5.2 clear blocks

void clear_blocks(string block_type);

This function will remove all blocks from the chunk and replace them with
blocks of the type block type. Calling this function is more efficient than calling
create rect(block type, 0,0,0, 15,15,15). See also the function clear all, which
not only clears all blocks but clears all basic entities, moving entities, environ-
ment rectangles, etc.

3.5.3 set pos

void set_pos(int x, int y, int z, string block_type);

The “set pos” function is used to change an individual block. It is the most
commonly used function.

In our example,

function p.main()

set_default_block("air")

set_pos(7,7,7,"iron")

end

the “set pos” function is used to set the block at position (7,7,7) to be of type
“iron”. The coordinates of a block are always (x,y,z) where x,y,z are integers
between 0 and 15 inclusive.

In the example

function p.main()

set_default_block("air")

set_pos(7,7,7,"iron")

set_pos(7,7,7,"grass")

end

the position (7,7,7) is initially set to have type “air”, then it is set to be of type
“iron”, and finally it is set to have type “grass”.

CHAPTER 3. BLOCK LUA SCRIPTS PART 1 23

3.5.4 get pos

string get_pos(int x, int y, int z);

Theoretically, by keeping track of which functions you call from the main func-
tion, you should be able to determine the block type of any position within the
chunk. However, to make life easier, the function “get pos” is provided for this
purpose. This function returns the block type of the specified block position.
For example, consider the following:

function p.main()

set_default_block("air")

set_pos(7,7,7,"iron")

block_type = get_pos(7,7,7)

end

The variable “block type” is set to the string “iron”.

3.6 Pseudo Random Functions

Chunks can be generated in a pseudo random fashion. The seed is set by calling
the function “srand”. A pseudo random float is obtained by calling “randf”. A
pseudo random int is obtained by calling “randi”.

3.6.1 srand

void srand(int seed);

This function sets the pseudo random seed. Note: just before the chunk
generation script is executed,

srand(seed normal())

is called. That is, the seed is set using the chunk path of the chunk.
In general, you can call functions to get the chunk generation input (de-

scribed soon) and use that to generate your own pseudo random seed, which you
then pass to srand. There are also several helper functions, like “seed normal”,
“seed nearby”, etc for creating a seed from the chunk generation input. Note:
this srand function is not the same as the one in the C programming language.

3.6.2 randf

float randf();

The “randf” function pseudo randomly returns a float between 0.0 and 1.0. The
following main function describes a chunk that has steel in the middle with an
80% probability, and has iron with a 20% probability:

CHAPTER 3. BLOCK LUA SCRIPTS PART 1 24

function p.main()

set_default_block("air")

if (randf() < 0.8) then

set_pos(7,7,7,"steel")

else

set_pos(7,7,7,"iron")

end

end

Note that these are pseudo random functions. So if you visit this chunk,
then go far away and come back, the chunk will be generated again in the same
way it was generated before. So if there was steel in the middle before, there
will be steel in the middle again.

However, if there are two chunk locations with the same block type, then
although the same chunk generation script will be executed, the pseudo random
seed for the chunk, given by seed normal(), will probably be different. So the
chunks would look different.

3.6.3 randi

int randi(int min_value, int max_value);

The “randi” function returns a pseudo random int between min value and
max value inclusive. The following main function describes a chunk with a
single iron block at a random position:

function p.main()

set_default_block("air")

x = randi(0,15)

y = randi(0,15)

z = randi(0,15)

set_pos(x,y,z,"iron")

end

3.7 Getting Chunk Generation Input

int get_input_path_length();

PATH get_input_path();

BTS get_input_path_bts();

string get_input_adj_bt(int dx, int dy, int dz);

In order to generate a chunk, the chunk generation script is allowed access to
the following:

1) the path PATH of the chunk from the root of the chunk tree,

2) the list BTS of block types of the chunks in that path, and

CHAPTER 3. BLOCK LUA SCRIPTS PART 1 25

3) the block types of all the chunks in the 5x5x5 region surrounding the
chunk.

This data can be used to create a seed for “srand”, although some built in
functions like “seed normal” and “seed nearby” do this for you already.

Note: PATH and BTS are arrays that are zero indexed. The list BTS of
block types is 1 longer than the path PATH of the chunk in the chunk tree (the
root of the chunk tree has a block type but no position from its parent, because
it has no parent). That is, BTS[0] is the block type of the root of the chunk
tree, and PATH[0] is the offset of the second chunk (in the path from the root)
from the first (the root chunk). If L is the length of PATH, then BTS has length
L+1 and BTS[L].name is the block type of the chunk that is being generated.

A call to get input path length() returns the length L of PATH. A call
to get input path() returns PATH. Then (PATH[0].x, PATH[0].y, PATH[0].z)
is the first element of the path. Here PATH[0].x is an integer. A call to
get input path bts() returns BTS. The following code prints all this input data.

function p.main()

set_default_block("air")

len = get_input_path_length()

print("Printing path of chunk from root (chunk path).")

PATH = get_input_path()

for i = 0,len-1 do

pos = PATH[i]

print("Position:")

print(tostring(pos.x)) --pos.x is an integer.

print(tostring(pos.y))

print(tostring(pos.z))

end

print("Printing the types of blocks in this path.")

BTS = get_input_path_bts()

for i = 0,len do --Notice this is len, not len-1

block_type = BTS[i].name --this is a string.

print(block_type)

end

end

The function get input adj bt gets the block type of a chunk in one of the
5x5x5 nearby chunks. For example, consider the following block with the script
generation file WorldNodes/Nodes/dandelion.lua. The code is such that the
dandelion only grows on top of a grass block:

function p.get_is_solid() return false end

function p.get_tex() return "" end

CHAPTER 3. BLOCK LUA SCRIPTS PART 1 26

function p.main()

set_default_block("air")

below_type = get_input_adj_bt(0,0,-1)

if below_type == "grass" then

--Can actually have a dandelion.

create_rect(7,7,0, 7,7,7, "green")

create_rect(6,6,6, 8,8,8, "yellow")

end

end

3.8 Generating Pseudo Random Seeds

3.8.1 seed normal

int seed_normal();

Just before the chunk generation script is executed,

srand(seed normal())

is called automatically. This causes the pseudo random seed to be set based on
the path of the chunk from the root of the chunk tree, and not on any of the
block types of the chunks in the path. Also, the block types of chunks in the
5x5x5 surrounding region are ignored.

Take for example the following code. Every time the chunk (in the same
location) is created, it will be created the same way. That is, it will either
always have steel or always have iron.

function p.main()

srand(seed_normal())

set_default_block("air")

if (randf() < 0.8) then

set_pos(7,7,7,"steel")

else

set_pos(7,7,7,"iron")

end

end

Like we said, the “srand(seed normal())” at the beginning of the main function
is not necessary.

For those that are curious, here is exactly how “seed normal” works: the
program has a list L1 of the first 100 or so prime numbers after 1,000,000. Let
PATH be the chunk path of the chunk from the root of the chunk tree. Consider
the list L2 which is as follows:

PATH[0].x, PATH[0].y, PATH[0].z, PATH[1].x, PATH[1].y, ...

CHAPTER 3. BLOCK LUA SCRIPTS PART 1 27

For each n, the program multiplies the n-th element of L1 by the n-th element
of L2. (Once we reach the end of L1, we loop back around). Then, the program
adds all these numbers together. That number is the seed.

3.8.2 seed nearby

void seed_nearby(int dx, int dy, int dz);

This function first calculates the path of a nearby chunk from the root of
the chunk tree. Then it is as if “seed normal” gets called, but using that path
instead. For example, the following could be the main function for a forest type
block:

function p.main()

srand(seed_normal())

set_default_block("air")

for i = 1,10 do

x = randi(0,15)

y = randi(0,15)

-- Making a "tree".

set_pos(x,y,0,"tree")

end

end

Below a forest type block could be a block of type forest dirt, with the following
main function:

function p.main()

srand(seed_nearby(0,0,1))

set_default_block("dirt")

for i = 1,10 do

x = randi(0,15)

y = randi(0,15)

-- Making a "tree root".

set_pos(x,y,15,"tree_root")

end

end

The blocks of type “tree” will be above the blocks of type “tree root”. The call
to “seed nearby” with the triple (0,0,1) makes the seed come from the chunk
that is one above in the z direction.

Note: the reason for the “seed normal” function to ignore block types is so
that the “seed nearby” function can work.

Note: a different way to accomplish this “roots below trees” example is to
use the function “get input adj bt(0,0,1)” in the “tree root” chunk generation
script.

CHAPTER 3. BLOCK LUA SCRIPTS PART 1 28

3.8.3 seed xy, seed xz, seed yz

void seed_xy();

void seed_xz();

void seed_yz();

Let PATH be the path of the chunk from the root of the chunk tree. PATH
is a list of triples (x,y,z), where x,y,z are integers between 0 and 15 inclusive.
The function “seed xy” sets the pseudo random seed to be based on the PATH,
however it ignores all z components of the triples. For example, if two chunks
with the same main function as below are on top of one another, the “shafts”
will line up:

function p.main()

srand(seed_xy())

set_default_block("dirt")

-- 10 shafts:

for i = 1,10 do

-- Creating an air shaft.

x = randi(0,15)

y = randi(0,15)

for z = 0,15 do

set_pos(x,y,z,"air")

end

end

end

3.8.4 chop type seed functions

void seed_normal_chop(int num_chop);

void seed_nearby_chop(int dx, int dy, int dz, int num_chop);

void seed_xy_chop(int num_chop);

void seed_xz_chop(int num_chop);

void seed_yz_chop(int num_chop);

The function “seed normal chop” sets the pseudo random seed using the
path of the chunk from the root of the chunk tree. However, it only uses an
initial segment of the path. For example, if 1 is passed as the argument to
“seed normal chop”, then the last triple (x,y,z) in the path will be ignored. If
2 is passed, then the last two triples will be ignored, etc. The other functions
behave similarly.

3.8.5 seed from last of type

void seed_from_last_of_type(string block_type);

Let PATH be the path of the chunk from the root of the chunk tree. Let BTS be
the list of block types that occur in this path. Out of all seed functions described,

CHAPTER 3. BLOCK LUA SCRIPTS PART 1 29

“set from last of type” is the only one that uses the BTS list to generate a
seed. The function works by first finding the largest index i such that BTS[i]
= block type. Then, the triples PATH[0] through PATH[i-1] inclusive are used
to generate the seed. Said another way, let C be the chunk on the chunk path
PATH farthest away from the root whose block type is block type. Then the
seed is obtained by calling “seed normal” inside C.

This function can be used to create planets where all the treasure rooms
within the planet, no matter how small, all have the same type of treasure. For
example, suppose the block type “mars like planet” has already been created.
Here is what the main function of “mars like planet treasure” might look like:

function p.main()

set_default_block("dirt")

srand(seed_from_last_of_type("mars_like_planet"))

if (randf() < 0.5) then

add_ent(7,7,7,"gold_10")

else

add_ent(7,7,7,"gold_20")

end

end

Within a Mars like planet, either all treasure rooms will have 10 gold, or all
treasure rooms will have 20 gold.

3.9 Blue Type Functions

void set_blue_type_up();

void set_blue_type_down(int x, int y, int z);

void set_blue_type_terminal(int x, int y, int z);

These functions determine the behavior when the player touches a blue ring
device. Here is a summary of how blue ring devices work:

Every chunk in the chunk tree is one of 3 types: A blue UP, a blue DOWN,
or a blue TERMINAL. Once you touch a blue ring, you travel. If you are in a
blue UP chunk, you go up one chunk in the chunk tree (towards the root). If
you are in a blue DOWN chunk, you go down one chunk (to a child specified
by the current chunk). This process repeats until you reach a blue TERMINAL
chunk, at which point you stop.

The x,y,z in the “set blue type down” function specify which chunk to which
you travel down. The x,y,z in the “set blue type terminal” specify the final block
position of the player (within the current chunk).

CHAPTER 3. BLOCK LUA SCRIPTS PART 1 30

3.10 Environment Rects

3.10.1 add env rect

void add_env_ent(

int min_x, int min_y, int min_z,

int max_x, int max_y, int max_z,

string ent_type);

Another type of game entity is a rectangle (box) of blocks (which the user can
possibly move through) that affects the player whenever he touches it. These are
called “environment rects”. Here is a main function that adds a single “death”
rect in the middle of the chunk:

function p.main()

set_default_block("air")

add_env_rect(6,6,6, 8,8,8, "death")

end

A death rect is invisible. As soon as the player touches a death rect, he immedi-
ately dies. The values for the 6 ints given to the function “add env rect” should
all be between 0 and 15 inclusive, with min x less than or equal to max x, etc.

The lua script for the death environment rect can be found in

base/EnvRects/death.lua

3.11 Basic Entities

3.11.1 add bent

void add_bent(int x, int y, int z, string ent_type);

This is the function used to add basic entities that take no other parameters.
Basic entities do not move. The position of a basic entity is always a block
position. There can only be one basic entity in a block position at a time. Here
is an example of a main function which adds a green shrink ring:

function p.main()

set_default_block("air")

add_ent(7,7,7,"ring_green")

end

Here are basic entity type strings, added by the “base” package, that can be
passed to “add bent” as the ent type:

base_save

base_ring_green

base_ring_red

CHAPTER 3. BLOCK LUA SCRIPTS PART 1 31

base_ring_pink_source

base_ring_pink_dest

base_ring_blue

base_respawn_point

base_waypoint_out_only

base_picture_gato4

Again the package “base” should always be a dependency. If you depend on
other packages, such as “xar”, then you can use all the entities that they define.
But it is advised to only depend on the “base” package.

3.11.2 add bent i

void add_bent_i(

int x, int y, int z, string ent_type,

int int_param);

Some basic entities take in an integer parameter when they are constructed. If
you use the wrong function, add bent s in place of add bent i for example, then
this can result in a bug.

3.11.3 add bent s

void add_bent_s(

int x, int y, int z, string ent_type,

string str_param);

Some basic entities take in a string when they are constructed. For these
you should use the function “add bent s” to add them. Here are all basic entity
type strings, added by the “base” package, that can be passed to “add bent s”:

base_txt

base_waypoint

base_waypoint_in_only

Here is an example:

function p.main()

set_default_block("air")

msg = "You better have enough rockets. "

.. "Seriously. "

add_ent_s(7,7,7,"txt",msg)

end

In the above example, “..” is the string concatenation operator (in the Lua
programming language).

CHAPTER 3. BLOCK LUA SCRIPTS PART 1 32

3.11.4 bent set param i

void bent_set_param_i(int x, int y, int z, int new_param_value);

Once you add a basic entity (BEnt) to the current chunk, you can change
its integer parameter by calling this function.

3.11.5 bent set param s

void bent_set_param_s(int x, int y, int z, string new_param_value);

Once you add a basic entity (BEnt) to the current chunk, you can change
its string parameter by calling this function.

For example, you might have the following code for the chunk main function:

function p.main()

set_default_block("e") --Empty block.

add_bent_s(2,2,3,"txt", "Beware of the warevulves") --I can’t spell.

bent_set_param_s(2,2,3, "Beware of the werewolves")

end

3.12 Moving Entities

3.12.1 add ment

void add_ment(int x, int y, int z, string type);

This function will add a moving entity (MEnt) centered at the center of the
block (x,y,z) of the current chunk. The type of the ment is specified by the type
variable.

Note that another way to add a ment is with the ment start and ment end
functions.

The scripts for moving entities are put in the MovingEnts directory.

3.12.2 add ment f

void add_ment_f(float x, float y, float z, string type);

This function will add a moving entity (MEnt) centered at position (x,y,z) of
the current chunk. This is identical to add ment, except the function add ment
will place the ment as the center of a block.

3.12.3 ment start

void ment_start(int x, int y, int z, string type);

With this method of adding a moving entity (MEnt), you first call the
ment start function, then call various functions (such as ment set b) to set pa-
rameters of the ment, then you call ment end which actually adds the ment to
the chunk.

CHAPTER 3. BLOCK LUA SCRIPTS PART 1 33

3.12.4 ment set b, ment set i, ment set f, ment set v, ment set s

void ment_set_b(string var_name, bool value);

void ment_set_i(string var_name, int value);

void ment_set_f(string var_name, float value);

void ment_set_v(string var_name, float x, float y, float z);

void ment_set_s(string var_name, string value);

You call these functions after calling ment start but before ment end. This
“set” functions will set the various parameters of a moving entity (MEnt) before
it is added to the current chunk.

“b” stands for bool, “i” stands for int, “f” stands for float, “v” stands for
vector, and “s” stands for string.

3.12.5 ment end

void ment_end();

After you call ment start and then call functions such as ment set b to set
parameters of the moving entity, you call this function ment end to finally add
the moving entity to the chunk.

Chapter 4

Block Lua Scripts Part 2

In the chapter Chunk Generation Lua Scripts Part 1, we covered the basics of
writing chunk generation Lua scripts (these are the lua scripts that get called
when a block is expanded into a chunk). We also started to discuss the Chunk
Generation API. We will complete the discussion of that API in this chapter.

Recall that the functions that can be called from the “p.main” function of
a Chunk Generation Script are

1) the functions built into the Lua language,

2) the functions defined in WorldNodes/Helpers, and

3) the functions defined as part of the “Chunk Generation API”.

Some notes: for 1), not actually every function in the Lua language is available.
To see which Lua functions are available, call dump lua env() from the main
function of a Chunk Generation Script. The list of all available functions will
be outputted to “Output/lua env dump.txt”.

For 3), the “Chunk Generation API” is the collection of functions such as
“set pos”. Many of these functions were discussed in the chapter Chunk Gener-
ation Lua Scripts Part 1. In this chapter we will discuss the rest of the functions
in this API.

So far, the only functions we have seen related to block data are “set default pos”,
“set pos”, “get pos”, and “clear blocks”. In this chapter we will see several
more. Although some of these new functions can for the most part be defined
from these old functions, we provide these new functions as built-in for conve-
nience and for speed reasons.

4.1 The Full Chunk Generation Lua-to-C API

We now list the complete “Chunk Generation Lua-to-C API”:

//---

34

CHAPTER 4. BLOCK LUA SCRIPTS PART 2 35

// Clearing Everything

//---

//Clearing all.

void clear_all(string block_type);

//---

// Blocks

//---

//Basic block functions.

void set_default_block(string block_type);

void clear_blocks(string block_type);

void set_pos(int x, int y, int z, string block_type);

string get_pos(int x, int y, int z);

//More block functions.

void create_rect(

int min_x, int min_y, int min_z,

int max_x, int max_y, int max_z, string type);

void create_sprinkles(

int min_x, int min_y, int min_z,

int max_x, int max_y, int max_z,

float prob, string type);

//Exotic block functions: Mazes.

void maze_start();

void maze_add_vertex(int x, int y, int z);

void maze_add_edge(

int x1, int y1, int z1,

int x2, int y2, int z2);

void maze_end();

bool maze_edge_open(

int x1, int y1, int z1,

int x2, int y2, int z2);

int maze_num_edges_from_vertex(

int x, int y, int z);

POS maze_deepest_vertex(LIST source_vertices);

//Exotic block functions: Caves.

void caves_start();

void caves_set_5x5x5();

void caves_set_num_nodes(

float min_nodes, float max_nodes);

void caves_set_nodes(

float frac_large_node,

CHAPTER 4. BLOCK LUA SCRIPTS PART 2 36

float small_node_min_rad,

float small_node_max_rad,

float large_node_min_rad,

float large_node_max_rad);

void caves_set_edges(

float max_edge_dist,

float frac_large_edge,

float small_edge_min_rad,

float small_edge_max_rad,

float large_edge_min_rad,

float large_edge_max_rad);

void caves_end();

bool caves_close_to_node(

int x, int y, int z);

INFO caves_close_to_node2(

int x, int y, int z);

bool caves_close_to_edge(

int x, int y, int z);

//---

// Pseudo Random

//---

//Pseudo random functions.

void srand(int seed);

float randf();

int randi(int min_i, int max_i);

//---

// Getting Chunk Generation Input

//---

//Getting the input.

int get_input_path_length();

PATH get_input_path();

BTS get_input_path_bts();

string get_input_adj_bt(int dx, int dy, int dz);

//---

// Creating Seeds from Chunk Generation Input

//---

//Pseudo random seeds.

int seed_normal();

int seed_nearby(int dx, int dy, int dz);

int seed_xy();

CHAPTER 4. BLOCK LUA SCRIPTS PART 2 37

int seed_xz();

int seed_yz();

int seed_normal_chop(int chop);

int seed_nearby_chop(int dx, int dy, int dz, int chop);

int seed_xy_chop(int chop);

int seed_xz_chop(int chop);

int seed_yz_chop(int chop);

int seed_from_last_of_type(string type);

//---

// Blue Ring Related

//---

//Blue type.

void set_blue_type_up();

void set_blue_type_down(int x, int y, int z);

void set_blue_type_terminal(int x, int y, int z);

//---

// Environment Rects

//---

//Env rects.

void add_env_rect(

int min_x, int min_y, int min_z,

int max_x, int max_y, int max_z, string type);

//---

// Basic Entities

//---

//Basic ents (BEnts).

void add_bent(int x, int y, int z, string type);

void add_bent_i(int x, int y, int z, string type, int param);

void add_bent_s(int x, int y, int z, string type, string param);

void bent_set_param_i(int x, int y, int z, int new_param_value);

void bent_set_param_s(int x, int y, int z, string new_param_value);

//---

// Moving Entities

//---

//Moving ents (MEnts).

void add_ment(int x, int y, int z, string type);

void add_ment_f(float x, float y, float z, string type);

void ment_start(int x, int y, int z, string type);

CHAPTER 4. BLOCK LUA SCRIPTS PART 2 38

void ment_set_b(string key, bool value);

void ment_set_i(string key, int value);

void ment_set_f(string key, double value);

void ment_set_v(string key, float x, float y, float z);

void ment_set_s(string key, string value);

void ment_end();

//---

// Debugging

//---

//Debugging functions.

void print(string str);

void exit();

void dump_lua_env();

We will only discuss the functions not already covered in the chapter “Chunk
Generation Lua Scripts Part 1”.

4.2 More Block Functions

4.2.1 create rect

void create_rect(

int min_x, int min_y, int min_z,

int max_x, int max_y, int max_z, string type);

Calling this function creates a box of blocks, from the block at position (min x,min y,min z)
to the position (max x,max y,max z). Calling

create rect(0,0,0, 15,15,15, type)

will replace all blocks in the chunk with the block of the specified type.
Note: Calling create rect is faster than calling set pos once for each block in

the box.

4.2.2 create sprinkles

create_sprinkles(

int min_x, int min_y, int min_z,

int max_x, int max_y, int max_z,

float prob, string type);

Calling this function is equivalent to the following:

for x = min_x,max_x do

for y = min_y,max_y do

CHAPTER 4. BLOCK LUA SCRIPTS PART 2 39

for z = min_z,max_z do

if(randf() < prob) then

set_pos(x,y,z, type)

end

end

end

end

4.3 Exotic Block Functions: Mazes

These maze creation functions are basic. These are intended for basically a hello
world purpose. We recommend you create your own maze creation functions in
WorldNodes/Helpers if you are making a significantly complicated world.

4.3.1 Creating a Maze

You can create mazes inside the chunk being generated. You create the maze
by first calling “maze start()”, and then you call some functions to set up the
creation of the maze. You then call “maze end()” to finish creating the maze.

void maze_start();

void maze_add_vertex(int x, int y, int z);

void maze_add_edge(int x1, int y1, int z1, int x2, int y2, int z2);

void maze_end()

After calling “maze start()”, you first add vertices. You must add all vertices
before adding any edges. You add a vertex by calling

maze add vertex(x,y,z).

You specify the x,y,z coordinates of a block within the chunk.
To add an “edge” between two vertices, you call

maze add edge(x1,y1,z1, x2,y2,z2)

where (x1,y1,z1) is the position of one vertex and (x2,y2,z2) is the position of
the other.

Then you call “maze end()”. This will trigger the engine to assign a random
weight to each edge, between 0.0 and 1.0. Then a minimal spanning tree will be
formed. The maze consists of all vertices and all edges in this minimal spanning
tree. Because the result is a tree, there are no “cycles”.

4.3.2 Basic Querying of the Maze

bool maze_edge_open(x1,y1,z1, x2,y2,z2);

CHAPTER 4. BLOCK LUA SCRIPTS PART 2 40

Once the maze has been created (after calling “maze end”), to determine
whether an edge is in the minimal spanning tree, call

maze edge open(x1,y1,z1, x2,y2,z2)

where (x1,y1,z1) is the position of one vertex and (x2,y2,z2) is the position of
the other. It returns true iff the edge is in the minimal spanning tree.

4.3.3 Example

Here is an example of the main function of a chunk generation script which
creates a maze:

function p.main()

set_default_block("e") --Empty block.

--The vertices and the edges of the maze

--will be solid (of type "s").

--Everything else will be empty (of type "e").

--This way if you look at the chunk from the

--distance, you can easily see the maze.

--Start creating the maze.

maze_start()

--Adding vertices to the maze.

--The first for loop starts x at 0 and

--goes to 15 inclusive, stepping by 2

--each time.

for x = 0,15,2 do

for y = 0,15,2 do

maze_add_vertex(x,y,7)

set_pos(x,y,7,"s")

end

end

--Adding edges to the maze.

--Only some of these will remain

--in the final minimal spanning tree.

for x = 0,15,2 do

for y = 0,15,2 do

if (x+2 <= 15) then

maze_add_edge(x,y,7, x+2,y,7)

end

if (y+2 <= 15) then

maze_add_edge(x,y,7, x,y+2,7)

end

CHAPTER 4. BLOCK LUA SCRIPTS PART 2 41

end

end

--Finish creating the maze.

maze_end()

--The graph (minimal spanning tree)

--for the maze has been created.

--An edge (between two vertices) is called "open"

--if it is in the final minimal spanning tree.

for x = 0,15,2 do

for y = 0,15,2 do

if (x+2 <= 15) then

if maze_edge_open(x,y,7, x+2,y,7) then

set_pos(x+1,y,7,"s")

end

end

if (y+2 <= 15) then

if maze_edge_open(x,y,7, x,y+2,7) then

set_pos(x,y+1,7,"s")

end

end

end

end

end

4.3.4 More Querying of the Maze: Part 1

int maze_num_edges_from_vertex(int x, int y, int z);

The function “maze num edges from vertex” tells you the number of open
edges incident to the given vertex. This is useful for determining which vertices
are “dead ends”.

Note: you could also probably use “get pos” for the same purpose. Note
that you can also use “get input adj bt” within the chunk generation script for
the block that occupies a vertex of the maze.

Here is code that you can add to the example above that colors the dead
ends black:

--Coloring dead ends black.

for x = 0,15,2 do

for y = 0,15,2 do

if maze_num_edges_from_vertex(x,y,7) == 1 then

set_pos(x,y,7,"r_black")

end

end

end

CHAPTER 4. BLOCK LUA SCRIPTS PART 2 42

4.3.5 More Querying of the Maze: Part 2

POS maze_deepest_vertex(LIST source_vertices);

To use the function “maze deepest vertex”, you first create a list of “source
vertices”. These must all be vertices of the maze. You pass these to the function,
and it will return the position of the vertex that is farthest away from any of
the source vertices. You can add the following code to the main example of this
section to color the deepest vertex brown:

--Making the source positions green.

set_pos(0,0,7,"r_green")

set_pos(15,15,7,"r_green")

--Putting the source positions into a list.

sources = {}

sources[1] = {x=0, y=0, z=7}

sources[2] = {x=15, y=15, z=7}

--Making the deepest vertex brown.

pos = maze_deepest_vertex(sources)

set_pos(pos.x, pos.y, pos.z, "r_brown")

4.4 Exotic Block Functions: Caves

These cave creation functions are basic. These are intended for basically a hello
world purpose. We recommend you create your own cave creation functions in
WorldNodes/Helpers if you are making a significantly complicated world.

There are also functions for creating caves. These are “stick and ball” caves,
meaning there are balls (nodes) connected by tubes (edges). Adjacent chunks
that use the same cave creation code will have caves that connect with each
other in the expected way.

4.4.1 Cave Creation

void caves_start();

void caves_set_5x5x5();

void caves_set_num_nodes(

float min_nodes, float max_nodes);

void caves_set_nodes(

float frac_large_node,

float small_node_min_rad,

float small_node_max_rad,

float large_node_min_rad,

float large_node_max_rad);

CHAPTER 4. BLOCK LUA SCRIPTS PART 2 43

void caves_set_edges(

float max_edge_dist,

float frac_large_edge,

float small_edge_min_rad,

float small_edge_max_rad,

float large_edge_min_rad,

float large_edge_max_rad);

void caves_end();

To start creating the caves, you call “caves start()”. There are then a variety
of functions you can call to create the stick and ball style caves.

By default, all sticks and balls in the surrounding 3x3x3 chunks will be
created. The engine accomplishes this by having a way to create all sticks and
balls within any given chunk (using the chunk path of the chunk as input to
the pseudo random number generator). So if there is a node in one chunk and
a node in an adjacent chunk, and if there is an edge between the two nodes, we
can carve out a shaft surrounding the edge that goes between the two nodes.

If you have a node in one chunk A and then a node in a chunk B that is
2 chunks away from B, by default there is no way to have an edge from the
first node to the second one. However, if you call “caves set 5x5x5()” after
“caves start()”, but before “caves end()”, then all sticks and balls in the sur-
rounding 5x5x5 chunks will be created. (Note: the 5x5x5 mode is slower for the
computer than 3x3x3 mode). Nodes that are two chunks away from each other
can then be connected by edges.

The function “caves set num nodes” specifies how many nodes should be
created in each chunk. You specify the min and the max number, and then
for each chunk the actual number will be chosen at random between the two.
Specifically, the min and max values are floats, a float is chosen at random
between these two, and then the integer floor of that is used.

There are two types of nodes: small ones and large ones. You specify the
radii of these two types of nodes by calling the function “caves set nodes”. You
specify the min and max radius of a small node, and then each small node will
have a radius randomly picked between the min and max. You also specify the
min and max radius of a large node. You also specify the fraction of nodes that
are large.

Each edge has a radius (so each edge is really a tube, or cylinder). You call
“caves set edges” to set the radii of these edges. There are two types of edges:
small and large. You specify the min and max radius of small edges. You do
the same for the large edges. You also specify the fraction of edges that are
large versus small. Finally, you specify the max edge distance. If 3x3x3 mode
is being used and two nodes are in adjacent chunks (or the same chunk), then
they will be connected by an edge iff the distance between them is less than the
max edge distance. If 5x5x5 mode is being used, then the same is true but now
for nodes that are in chunks that are at most 2 chunks apart.

When you are finished specifying the caves, call “caves edge()” to finish
creating the maze.

CHAPTER 4. BLOCK LUA SCRIPTS PART 2 44

4.4.2 Querying the Caves: Part 1

bool caves_close_to_node(int x, int y, int z)

bool caves_close_to_edge(int x, int y, int z)

The next step is iterating through every block position P in the chunk to
see if P is inside a node or an edge. You then “carve out” all such block
positions. You call “caves close to node” and “caves close to edge” to see if a
block position is inside a node or edge.

4.4.3 Example

Here is the main function of a chunk generation script that creates some caves.

function p.main()

--The chunk is by default solid to start with.

set_default_block("s")

--Creating the stick-and-ball data

--structure for the caves.

caves_start()

--Making the cave connect

--together nodes that are at most 2 chunks apart

--(as opposed to 1 chunk apart).

--Setting the 5x5x5 option makes cave creation slower.

caves_set_5x5x5()

--Between 2 and 3 nodes per chunk (random).

caves_set_num_nodes(2.0,3.99)

--Only 0.01 of nodes are large, the rest are small.

--Small nodes have radius between 3.0 and 4.3, and

--large nodes have radius between 17.5 and 18.0.

caves_set_nodes(0.01, 3.0,4.3, 17.5,18.0)

--Max dist between two nodes that can be connected

--with an edge is 20.0 (to go beyond 16.0 for this

--number, must call caves_set_5x5x5).

--No edges are large.

--Small tubes (around edges) have radius between 1.0 and 2.0.

--Large tubes have radius between 7.0 and 8.0.

caves_set_edges(20.0, 0.0, 1.0,2.0, 7.0,8.0)

caves_end()

--Now, the stick-and-ball data structure

--for the caves has been created.

CHAPTER 4. BLOCK LUA SCRIPTS PART 2 45

--***

--***

--***

for x = 0,15 do

for y = 0,15 do

for z = 0,15 do

close = caves_close_to_node(x,y,z)

or caves_close_to_edge(x,y,z)

if close then

--Carving out the position.

set_pos(x,y,z,"e")

end

end

end

end

end

4.4.4 Querying the Caves: Part 2

INFO caves_close_to_node2(int x, int y, int z)

A common task it to add one item to the center of each node in the stick
and ball caves. To do this, you can use the “case close to node2” function which
returns an object data with the following members:

data.close //the result of case_close_to_node

data.which_node //which nodes is closest to

data.dist //distance to closest node

data.is_big //whether the nodes is closest to is big

Each node has a number. You can keep track of this so you only place one item
per node. Here is a modification of the cave creation code from this section that
only puts one “gold 10” item in the center of each node. This code should occur
after the “caves end()” function.

--A table, whose keys are the IDs of the nodes

--that have a power up placed in them.

filled_nodes = {}

for x = 0,15 do

for y = 0,15 do

for z = 0,15 do

close_to_edge = caves_close_to_edge(x,y,z)

data = caves_close_to_node2(x,y,z)

CHAPTER 4. BLOCK LUA SCRIPTS PART 2 46

close_to_node = data.close

--Carving the position if need be.

if close_to_node or close_to_edge then

set_pos(x,y,z,"e")

end

--Adding gold in the center (for each node).

if close_to_node then

which_node = data.which_node

dist = data.dist

is_big = data.is_big

if (dist < 1.5) and

filled_nodes[which_node] == nil

then

filled_nodes[which_node] = true

add_ent(x,y,z, "gold_10")

end

end

end

end

end

4.5 Debugging

4.5.1 print

void print(string str);

This will print the given string str to standard output. At the beginning the
following will be prepended:

“Proc world gen: CHUNK FILENAME.lua: ”

4.5.2 exit

void exit();

This will exit the program. Before doing so, the following will be printed to
standard output:

“Proc world gen: CHUNK FILENAME.lua: exiting program.”

CHAPTER 4. BLOCK LUA SCRIPTS PART 2 47

4.5.3 dump lua env

void dump_lua_env();

This will print to Output/lua env dump.txt all functions in the current Lua
state that are available.

Chapter 5

Block Lua Scripts Part 3

5.1 More Block Lua Module Functions

We have already seen in Section 3.3 3 functions that appear in all Block Lua
Scripts: get is solid, get tex, and main. Those 3 functions are mandatory. In
this chapter we describe more “module” functions which can appear in these
Block Lua Scripts. The functions that we describe in this chapter are similar
to get is solid and get tex.

Here is a list of more functions which can be put in Block Lua Scripts:

//---

// Specifying if the block is solid

//---

bool get_is_solid(); //Mandatory.

bool get_is_solid_physically();

bool get_is_solid_move_body();

bool get_is_solid_visibly();

bool get_is_solid_visibly_glass();

//---

// Specifying the texture of the block

//---

string get_tex(); //Mandatory.

string get_tex_x_pos();

string get_tex_x_neg();

string get_tex_y_pos();

48

CHAPTER 5. BLOCK LUA SCRIPTS PART 3 49

string get_tex_y_neg();

string get_tex_z_pos();

string get_tex_z_neg();

string get_inv_tex_x_pos();

string get_inv_tex_x_neg();

string get_inv_tex_y_pos();

string get_inv_tex_y_neg();

string get_inv_tex_z_pos();

string get_inv_tex_z_neg();

//---

// The main function (generating the chunk)

//---

void main(); //Mandatory.

5.2 Other Module Functions in Block Lua Scripts

There are other Module functions in Block Lua Scripts. These are functions used
by the “Game” system. These functions are described in the chapter Block Lua
Scripts Part 4.

For example, perhaps there might be a function in a block’s Chunk Gener-
ation Lua script that is called when the player wants to “use” the block. We
decided to keep all of these module functions in the same Block Lua Script,
instead of having multiple Lua scripts describing a single block type.

5.3 Lua-To-C API’s

The “main” function can call functions in the Chunk Generation Lua-To-C API.
However the remaining functions described in this chapter (get is solid physically,
get is solid visibly, get is solid visibly glass, get tex XXX, get inv tex XXX) do
NOT have access to any Lua-To-C API.

5.4 p.get is solid

bool get_is_solid();

We already described this function. It must appear in every Block Lua
Script. This function returns whether on not a block is “solid”. However there
are several notions of solid:

� physically solid

� move body solid

CHAPTER 5. BLOCK LUA SCRIPTS PART 3 50

� visibly solid

A chunk is physically solid iff game projectiles cannot move through the
block.

A chunk is move body solid iff the player cannot move through the block.
A chunk is visibly solid iff the player cannot see through the chunk. If blocks

A and B are adjacent, A is NOT visibly solid but B is visibly solid, then the
game will display a square on the side of the B block that faces into the A block.

The get is solid must appear in each Block Lua Script, and then the functions
get is solid physically, get is solid move body, get is solid visibly should be de-
fined only if they return a value different than the value returned by get is solid.
In this way we can specify whether or not a block is physically solid, move body
solid, and visibly solid.

5.5 p.get is solid physically, etc

bool get_is_solid_physically();

bool get_is_solid_move_body();

bool get_is_solid_visibly();

Use these functions to define whether or not a block is physically solid,
move body solid, and visibly solid. These three attributes are described in the
previous section. Each of these functions only needs to be defined if it returns
a value different from get is solid. Here are some examples:

Here is a block invisible wall.lua which is physically solid, move body solid,
but not visibly solid. In other words, this is an invisible wall that the player
cannot move through or shoot through but the player can see through it. Fur-
thermore, it appears completely invisible:

function p.get_is_solid() return true end

function p.get_is_solid_visibly() return false end

function p.get_tex() return "" end

function p.main()

set_default_block("invisible_wall")

end

Note the following:

The get tex function should return a non-empty string iff the block is visibly solid.

Here is a block secret wall.lua which is physically solid and visibly solid, but
not move body solid. This is a block that the player can move through, but
nobody can see through it or shoot through it:

function p.get_is_solid() return true end

function p.get_is_solid_move_body() return false end

CHAPTER 5. BLOCK LUA SCRIPTS PART 3 51

function p.get_tex() return "concrete" end

function p.main()

set_default_block("secret_wall")

end

Here is a slightly different variant of this. Here is a block secret wall2.lua
which is visibly solid but is neither physically or move body solid. So the player
can move and shoot through this block, but they cannot see through it:

function p.get_is_solid() return true end

function p.get_is_solid_physically() return false end

function p.get_is_solid_move_body() return false end

function p.get_tex() return "concrete" end

function p.main()

set_default_block("secret_wall2")

end

Note that it does not hurt to define all of get is solid physically, get is solid move body,
and get is solid visibly.

5.6 p.get is solid visibly glass

bool get_is_solid_visibly_glass();

It is actually not as simple as each block either being visibly solid or not.
There are three possibilities: visibly solid, visibly empty, or visibly glass. By
having only

function p.get_is_solid_visibly() return true end

this makes the block visibly solid.
By having only

function p.get_is_solid_visibly() return false end

this makes the block visibly empty.
However to make a block visibly glass, you need the following in the Block

Lua Script:

function p.get_is_solid_visibly() return false end

function p.get_is_solid_visibly_glass() return true end

When a block is visibly glass, it should have a texture that is partially trans-
parent. Specifically, each pixel in the texture should be either 100% transparent
or 100% opaque. If a block is visibly glass, this texture will be displayed in
certain circumstances.

More precisely, if A and B are adjacent blocks and A is visibly empty and
B is visibly glass, then there will be a partially opaque square displayed on the

CHAPTER 5. BLOCK LUA SCRIPTS PART 3 52

face of B that faces A. If A and B are adjacent blocks and they are BOTH
visibly glass, then no texture will be displayed on the face of each block facing
the other. If A and B are adjacent blocks and A is visibly glass but B is visibly
solid, then there will be a square displayed on the face of B that faces A.

In other world, visibly glass blocks appear in the way that normal glass
blocks appear in the Fractal Block World package Xar.

Here is an example of a glass block glass.lua. It is physically and move body
solid, but it is visibly glass. So the player cannot shoot or move through it,
but the player can see through the block. Also, a partially transparent texture
appears on the boundary of the glass blocks:

function p.get_is_solid() return true end

function p.get_is_solid_visibly() return false end

function p.get_is_solid_visibly_glass() return true end

function p.get_tex() return "orange_glass" end

function p.main()

set_default_block("glass")

end

Here orange glass should be a texture which is partially transparent and
partially opaque.

5.7 p.get tex x pos, p.get tex x neg, etc

string get_tex(); //Mandatory.

string get_tex_x_pos();

string get_tex_x_neg();

string get_tex_y_pos();

string get_tex_y_neg();

string get_tex_z_pos();

string get_tex_z_neg();

The get tex is mandatory. It specifies the texture to be used on all 6 sides
of the cube. However the texture used for each of the 6 sides can be overridden
using the functions get tex x pos, get tex x pos, etc.

For example, here is a block mostly blue.lua which is blue on all 6 sides
except for the top where it is red:

function p.get_is_solid() return true end

function p.get_tex() return "blue" end

function p.get_tex_z_pos() return "red" end

function p.main()

set_default_block("mostly_blue")

end

CHAPTER 5. BLOCK LUA SCRIPTS PART 3 53

5.8 p.get inv tex x pos, p.get inv tex x neg, etc

string get_inv_tex_x_pos();

string get_inv_tex_x_neg();

string get_inv_tex_y_pos();

string get_inv_tex_y_neg();

string get_inv_tex_z_pos();

string get_inv_tex_z_neg();

Note: “inv” stands for inverse.
Suppose A and B are adjacent blocks and A is either visibly empty or glass

and B is visibly solid. So far, we have said in this situation we will display a
square texture on the B block that faces the A block. Which texture we use
is determined by the B block. However if the functions get inv tex x pos are
defined in Block Lua Script for A, then these can override the texture used.

For example, here is a block which is not visibly solid but if we place it
on the ceiling, it changes the ceiling texture. Call this Block Lua Script ceil-
ing paint.lua:

function p.get_is_solid() return false

function p.get_is_solid_visibly() return false --Not needed.

function p.get_tex() return "" end

function p.get_inv_tex_z_neg() return "blue" end

function p.main()

set_default_block("e") --Empty.

create_rect("ceiling_pain", 0,0,15, 15,15,15)

end

There is one more point: if A and B are adjacent blocks and if A is visibly
empty (or glass) and B is visibly solid such that A defines an inverse texture,
then on the face of B that faces A, should we use the texture specified by the
B block or the A block? We allow you to configure that. That is, you should
have the file

WorldNodes/side tex conflict.lua

which should look like the following:

--Returns true iff the inv side takes precedence.

function p.resolve(

bt1, --solid type

tex1,

bt2, --empty type

tex2,

side)

--Could make this more complex.

--This function always returns true, so the

CHAPTER 5. BLOCK LUA SCRIPTS PART 3 54

--inv texture of the empty bt2 block always takes

--precedence over the texture of the solid bt1 block.

--Feel free to change this.

return true

end

Chapter 6

Block Lua Scripts Part 4

6.1 Even More Block Lua Module Functions

In Fractal Block World, we have blocks which have typical block functions but
these blocks also turn into chunks themselves. In this chapter we describe more
“module” functions of Block Lua Scripts, specifically focused around the typical
block-like aspect of blocks.

Here are functions that can be put into Block Lua Scripts that are described
in this chapter:

//---

// Proximity Events

//---

void on_close(int level, BlockPos bp);

void on_adj_block_changed(

int level, BlockPos bp, int side,

string adj_old_bt_str,

string adj_new_bt_str);

6.2 on close

void on_close(int level, BlockPos bp);

This function of the Block Lua Script is called when the bounding box of
the player is at most 1.0 units from the block.

Note: a BlockPos is a class with 3 float members: x,y,z.
Let’s say that the player’s body is in ground mode, which means the player’s

body is a cylinder. This is what the close function might look like:

on_close(level, bp)

55

CHAPTER 6. BLOCK LUA SCRIPTS PART 4 56

--Getting the (cylinder) body dimensions.

local radius = ga_get_sys_f("game.player.move.ground.radius")

local bot_to_eye = ga_get_sys_f("game.player.move.ground.bot_to_eye")

local eye_to_top = ga_get_sys_f("game.player.move.ground.eye_to_top")

--Do things with these numbers...

6.3 on adj block changed

void on_adj_block_changed(

int level, BlockPos bp, int side,

string adj_old_bt,

string adj_new_bt);

Let B be the block of which this on adj block changed function is being
called. The function on adj block changed is called when a block adjacent to B
has its block type changed. Note that a block being expanded into a chunk does
not count as a block type change. However if A is a block adjacent to B and the
block type of A changes from “dirt” to “air”, then the “on adj block changed”
function will be called on the block B.

“Side” refers to the side relative to the block B. Side is an integer between
0 and 5 inclusive. 0 = x positive, 1 = x negative, 2 = y positive, etc.

“adj old bt” is the old block type string of the block adjacent to B. “adj new bt”
is the new block type string of the block adjacent to B.

Chapter 7

STD Chunk Generation
Helpers

In addition to the Chunk Generation Lua API, there are also built-in Lua helper
functions, found in “base/WorldNodes/Helpers”. These functions can be used
within any main function of a Block Lua Script.

If you are making a significantly large world, we suggest you do NOT use
any of these standard chunk generation script helper functions. Instead, define
your own. We recommend this because it would be best if your world is as self
contained as possible. However, we encourage you to use these helper functions
as inspiration.

As we just said, because these functions may change in the future, instead
of directly using one of these functions, you should copy the script file that
contains it to your package’s WorldNodes/Helpers directory (or even better
you could copy one function at a time). For example, if you want to use
“std.create center()” which is defined in “std.lua”, then copy

base/WorldNodes/Helpers/std.lua

to
myworld/WorldNodes/Helpers/std.lua

Better yet, copy it to

myworld/WorldNodes/Helpers/mystd.lua,

then you can call “mystd.create center()”.

7.1 More Block Functions

7.1.1 std.create center

void std.create_center(int diameter, string type);

57

CHAPTER 7. STD CHUNK GENERATION HELPERS 58

The function creates a box of blocks in the center of the chunk. Calling
std.create center(1,”stone”) is equivalent to calling create rect(7,7,7, 7,7,7, “stone”);
Calling std.create center(2,”stone”) is equivalent to calling create rect(7,7,7,
8,8,8, “stone”); Calling std.create center(3,”stone”) is equivalent to calling cre-
ate rect(6,6,6, 8,8,8, “stone”); Etc.

7.1.2 std.create tube

void std.create_tube(int diameter, string axis, string type);

This function creates a box of blocks centered along one of the three axes.
Acceptable values for axis are “x”, “y”, and “z”. For example, std.create tube(2,
“z”, “stone”) is equivalent to calling create rect(7,7,0, 8,8,15, “stone”).

Here is a way you can create a hollow tube:

std.create_tube(4, "z", "stone")

std.create_tube(2, "z", "air")

7.1.3 std.create half tube

void std.create_half_tube(int diameter, string dir, string type);

This function is like create tube except instead of the tube going from one side
to the other, it goes from one side to the middle. Acceptable values for dir are
“x pos”, “x neg”, “y pos”, “y neg”, “z pos”, “z neg”. For example, here is how
to create a lollipop:

create_half_tube(1, "z_neg", "white_paper")

create_center(3, "red_cherry_candy")

7.1.4 std.create edges

void std.create_edges(string type);

This function will create the 12 edges of the chunk.

7.1.5 std.create shell

void std.create_shell(string type);

This function will create the outer shell of the chunk (without changing the
14x14x14 inside).

CHAPTER 7. STD CHUNK GENERATION HELPERS 59

7.1.6 std.create 2x2 door

void std.create_2x2_door(

string dir,

string rim_type,

strong hole_type);

This can be use in conjunction with “create shell” to make a room with doors
in it.

Chapter 8

In Game Tools

There are several tools available to debug your world while you are in the game.

8.1 The Path Command

If you open the console (press ∼) and run the command

path

it will print to the console the name of the script for whatever chunk you are in.
If you enter the command

path

this will print to the console the chunk names of the ancestors of the chunk you
are in, starting from the root of the chunk tree all the way to the chunk you are
in. That is, it will print the names of the chunks in your current chunk path.
It will also print the chunk path as a list of triples (x,y,z).

If you enter the command

path dump

this will output to “Output/path.txt” your chunk path from the root of the
chunk tree.

The format of the chunk path (on the line starting “chunk path” in the file
Output/path.txt) is a list of triples of hex characters (for x,y,z) separated by
underscores (with the exception that the empty path is “EMPTY PATH”).

8.2 The Script Command

If you open the console (press ∼) and run the command

script

60

CHAPTER 8. IN GAME TOOLS 61

it will print to the console the Block Lua Script for whatever chunk you are in.
Remember you can use your mouse wheel or page up / page down to scroll

up and down in the console.

Chapter 9

Coordinates

The layout of the world in Fractal Block World is unusual, so in this chapter we
will describe the different coordinate systems that the engine uses.

9.1 The Chunk Tree (and the Active Chunk Tree)

The world consists of chunks, each of which is a 16x16x16 region of blocks.
However every block can be subdivided into a chunk itself. So if C1 is a chunk
and B1 is one of the blocks of C1 (either solid or empty), then B1 can be
subdivided into its own chunk C2. We say that the chunk C2 is a child of
the chunk C1 (and C1 is the parent of C2). If B2 is a block of C2 and it is
subdivided into a chunk C3, then here C3 is a child of C2. We say that C3 is
a descendant of C1 (and C1 is an ancestor of C3). We say that every chunk
is a descendant of itself and an ancestor of itself. In this way, we have a tree of
chunks (the chunk tree).

The level of a chunk is which level the chunk occurs in the chunk tree. So
the root chunk of the world is in level 0 (and the root chunk is the ONLY chunk
in level 0). Then there are 16x16x16 chunks in level 1. These are the children
of the root chunk. Then there are 256x256x256 chunks in level 2, etc.

At any point in time the game can only interact with a few thousand chunks.
These chunks form what we call the active chunk tree. When a chunk is
added to the active chunk tree, we first procedurally generate the chunk from
scratch and we then load any modifications to the chunk that have been saved
previously. Later, we may remove a chunk from the active chunk tree.

9.2 Viewer Centric Position

The viewer (the eye of the player) is always in a chunk in the active chunk tree.
In a sense, a chunk which contains the viewer position is the center of the world.
The viewer is always “on a certain level” which we call the viewer level. The
chunk of the viewer is the chunk which contains the viewer which is on the

62

CHAPTER 9. COORDINATES 63

viewer’s level. A chunk is a center chunk iff it is the (unique) chunk of a level
which contains the viewer position. In other words, a chunk is a center chunk
iff it is an ancestor of the chunk of the viewer.

Within a level, the center chunk is said to have “viewer centric position”
(0, 0, 0). The chunk of that same level that is 1 chunk to the right (right is the
positive x direction) is (1, 0, 0), etc. We call the viewer centric position the vcp
of the chunk for short.

So the viewer’s chunk has vcp (0, 0, 0). The parent of the viewer’s chunk
also has vcp (0, 0, 0), etc.

When the viewer moves from one chunk to an adjacent one, this will change
the vcp’s of the chunks on his level L. However the vcp’s of chunks on level
L− 1 may or may not change, etc. The movement of the player is like walking
on a treadmill: when the player moves from chunk to chunk, he keeps looping
back and the world is the thing that actually moves.

9.3 Ways to describe the position of a chunk

There are three main ways to describe the position of a chunk:

� The path of the chunk.

� The level of the chunk together with the chunk’s vcp (viewer centric posi-
tion).

� The chunk id of the chunk.

9.3.1 chunk path

The path of the chunk is the path of the chunk from the root of the chunk
tree. This is described as a string of triples of hex characters, separated by
underscores. For example

7a3 221

is the path of a chunk C2 on level 2 which we can reach as follows: start at the
root C0 and go to block (7, 10, 3) of that chunk. That block is the same as lets
say chunk C1. Then in C1 we go to the block (2, 2, 1). That block is the chunk
for C2.

The root has chunk path “EMPTY PATH”.
The main advantages of using the chunk path to refer to a chunk are 1) these

paths do not change when the player moves or restarts the program and 2) the
path of a chunk is valid even if the chunk is not in the active chunk tree.

The main disadvantage of using the chunk path to refer to a chunk is that
this is slower than the other methods (when the chunk is very deep in the tree).

CHAPTER 9. COORDINATES 64

9.3.2 level + vcp

We can also refer to the position of a chunk using the level it is on (which is an
integer) and its vcp (viewer centric position).

An advantage of this method is that the level + vcp combination only uses
4 integers. Another advantage is the level + vcp combination makes it easy to
talk about the positions of vectors in a level. We discuss this later with “level
positions”.

The main disadvantage of this method is that vcp’s will likely change when-
ever the viewer moves from one chunk to another.

9.3.3 chunk id

Every chunk in the active chunk tree has a chunk id (which is an integer). The
system that maintains the active chunk tree has a counter N which starts at
zero. Every time a chunk is added to the active chunk tree, is gets assigned the
chunk id N and then N gets incremented.

Every time the user loads a game, this system is rebooted and so it goes
back to zero. For this reason, chunk ids cannot be used for long term storage.

9.4 Level and local positions (for vectors)

Consider an entity, like a bullet or a rocket. This entity exists on some level L.
We want to represent its position as a vector (x,y,z). There are two ways to do
this: with a local position or with a level position.

9.4.1 Local positions

Every chunk has its own coordinate system. The origin of this coordinate system
is in the left back bottom position of the chunk. So if (x,y,z) is a point in the
chunk then each of x,y,z is between 0.0 and 16.0 inclusive.

Given a point in a chunk, we call the point’s position relative to the chunk’s
coordinate system the local position of the point. For example, if a bullet is
at the center of chunk C, then the bullet has the local position (8.0, 8.0, 8.0).

9.4.2 Level positions (LP)

Consider a point on level L. The level position (LP) of the point is the position
of the point relative to the center chunk of level L.

For example, if a point is in the center chunk of a level, then its local position
is the same as its level position.

In a sense a point in space exists in more than one level. So for example we
can convert a point’s level position for level 13 into its level position for level
12, etc.

Note that when the player moves from one chunk to another, this will likely
change an entity’s level position.

CHAPTER 9. COORDINATES 65

9.5 Block Positions (BP) and Local Block Posi-
tions (LBP)

Block Positions are to Level Positions as Local Block Positions are to Local
Positions.

9.5.1 Local Block Positions (LBP)

A chunk contains 16x16x16 blocks (either solid or empty). The positions of
these blocks within the chunk are called the local block positions (LBPs) of
the blocks. The left back bottom block in a chunk has the lbp (0,0,0). The
right front top block in a chunk as the lbp (15,15,15). So an lbp for a block in
a chunk is a triple (x,y,z) of integers such that each x,y,z is between 0 and 15
inclusive.

Actually each of x,y,z is a signed 8 bit integer (signed char). This allows
representing the positions of blocks that are slightly outside the current chunk.
This is sometimes useful. However you should not compute the hashcodes of
local block positions outside the chunk.

A local block position can be represented by a single 4 byte integer, which we
call a local block position hashcode. See the Lua script base/Game/std.lua
which has the functions lbph to lbp and lbp to lbph to convert back and forth
between an lbp and an lbph. This is how lbp to lbph is defined for example:

function p.lbp_to_lbph(lbp)

return lbp.z + (16 * lbp.y) + (256 * lbp.x);

end

You can create an lbp using the function std.bp. This is code to convert an
lbp into an lbp hash and then back again:

local lbp = std.bp(3,4,5)

local lbph = std.lbp_to_lbph(lbp)

local lbp2 = std.lbph_to_lbp(lbph)

--Now lbp should equal lbp2.

9.5.2 Block Positions (BP)

Every block is in some level. If a chunk C is in level L, then the blocks of C we
also say are in level L (but when we subdivide each such block, the chunk the
block becomes is in level L+ 1).

The block position (BP) of a block is the position of the block relative to
the center chunk of whatever level the block is in. A block position is a triple
(x,y,z) of integers.

If a block is in the center chunk of a level, then the block’s block position is
the same as its local local block position.

Consider the block B1 with block position (15,3,4) of the center chunk of a
level. The block B2 one to the right of this has block position (16,3,4). This

CHAPTER 9. COORDINATES 66

is not located in the center chunk C1, but instead it is the the chunk C2 one
to the right of the center chunk. The block B2 has local block position (0,3,4)
inside the chunk C2.

Chapter 10

Environment Rect Lua
Scripts

An Environment Rect can be added in the main function of a Chunk Generation
Script by calling the function “add env rect”. Recall that this function has the
following syntax:

void add_env_rect(

int min_x, int min_y, int min_z,

int max_x, int max_y, int max_z, string type);

An Environment Rect is an invisible box. To make a 3x3x3 “death” type
env rect that starts at (1,2,3) and goes to (3,4,5) inclusive, you would put

add_env_rect(1,2,3, 4,5,6, "death")

in the chunk’s Chunk Generation Lua Script main function. An env rect is
entirely contained in a single chunk. So when a chunk generation script calls
add env rect to create an env rect, then min x, min y, min z, max x, max y,
max z, must all be from 0 to 15 inclusive.

Environment Rect Lua Scripts are put in the folder EnvRects (in your pack-
age’s top folder).

10.1 Environment Rect Lua Script Module Func-
tions

Here are all the module functions of Environment Rect Lua Scripts. There is
only one:

void on_touch();

67

CHAPTER 10. ENVIRONMENT RECT LUA SCRIPTS 68

10.1.1 p.on touch

The on touch function of an env rect lua script is called when then player’s
bounding box intersects the env rect box. The base package has the ”death”
env rect script. That is, there is the script file base/EnvRects/death.lua and it
reads as follows:

function p.on_touch()

ga_damage_player(true, 10000)

end

Here ga damage player is a function (which is part of the Game API) which
deals damage to the player.

The game is updated many times per second, so if the player is touching an
env rect, then the on touch function of the env rect will be called many times.
So if you want an env rect with is a jump pad, then you may want to use a
global variable (using ga set f and ga set f) to record the last time a jump pad
was used. This way you can impose a rule that a jump pad cannot be used
twice in a 0.1 second time interval for example.

10.2 Disclaimer

Environment Rect Lua Scripts are only used for basic purposes so far. At some
point we might make changes to how these scripts work. For example, the
on touch function might take an integer id as an argument and this could be
used to query information about the env rect via the Game Lua-To-C API.
Perhaps in this way the on touch function can get access to the parameters
min x, min y, min z, max x, max y, max z.

Chapter 11

Basic Entity Lua Scripts

A basic entity (BEnt) occupies a block position and does not move. It is only
rendered if you are on the same level as the entity. A basic entity is very
lightweight. Gold is an example of a basic entity.

Eventually we plan to make it so that everything you can do with a BEnt
you can do with a more advanced type of entity: a moving entity (MEnt).

Basic Entity Lua Scripts are put in the folder BasicEnts (in your package’s
top folder).

11.1 Basic Entity Lua Script Module Functions

Here are all the module functions of Basic Entity Lua Scripts.

//---

// Called During (Type) Initialization

//---

string get_mesh();

string get_mesh2();

bool get_pulsates();

float get_scale();

float get_touch_dist();

//---

// Called During Main Game

//---

void on_touch(int level, BlockPos bp);

bool get_can_use(int level, BlockPos bp);

string get_use_msg(int level, BlockPos bp);

void on_use(int level, BlockPos bp);

void on_telekinesis(int level, BlockPos bp);

69

CHAPTER 11. BASIC ENTITY LUA SCRIPTS 70

11.2 Initialization Functions

These functions are called when the package is loaded. They are called one time
for each Basic Entity Lua Script (not one time for each Basic Entity itself in
the world). For example, if there is the script BasicEnts/cheese.lua, then the
function p.get mesh of cheese.lua will be called only once when the package is
loaded to determine the mesh of basic entities of type cheese.

11.2.1 p.get mesh

string get_mesh();

This function is called by the game to determine the mesh of the basic entity.
If the following is in the basic entity’s Lua script grenade box.lua, then the mesh
“small box” will be used for the mesh of the basic entity:

function p.get_mesh() return "small_box" end

Here small box must be a mesh name that is listed in the file

“Meshes/mesh names.txt”.

If the function p.get mesh is not defined in the basic entity Lua script, then
the mesh name that is used is the name of the basic entity lua script itself. In
our example, the mesh name “grenade box” would be used if p.get mesh was
not defined.

11.2.2 p.get mesh2

string get_mesh2();

A basic entity actually uses two meshes for rendering, the second being
optional. Both meshes are rendered centered in the block that the basic entity
is in. Use p.get mesh2 to specify the second mesh name. If p.get mesh2 is not
defined in the basic entity Lua script, then only the first mesh will be used
(specified by p.get mesh).

11.2.3 p.get pulsates

bool get_pulsates();

This specifies whether or not the basic entity “pulsates”. If it pulsates, then
its size changes sinusoidally over time. This is only used for rendering purposes.
If this function is not defined, then the basic entity will pulsate by default.

CHAPTER 11. BASIC ENTITY LUA SCRIPTS 71

11.2.4 p.get scale

float get_scale();

This allows you to change the size of a basic entity (for rendering purposes
only) without having to change the entity’s mesh. If p.get scale is not de-
fined, then the scale number will be 1.0. Suppose the basic entity Lua script
grenade box.lua includes the following:

function p.get_mesh() return "small_box" end

function p.get_scale() return 2.0 end

Then a “small box” mesh will be used for rendering the basic entity, but it
will be scaled by a factor of 2.

11.2.5 p.get touch dist

float get_touch_dist();

Let R be the touch distance of a basic entity. When the player’s eye is within
distance R from the center of the basic entity, then the basic entity’s on touch
function will be called. The p.get touch dist function specifies this distance.
For example, suppose the basic entity Lua script grenade box.lua includes the
following:

function p.get_touch_dist() return 3.0 end

Then when the player is within 3.0 units of the grenade box, then the
on touch function of the grenade box will called. Note that the width of a
block is 1.

11.3 Game Functions

These functions are called during normal game execution. The engine calls these
functions during various times, and it passes to these functions the chunk id of
the chunk containing the entity along with the local block position of the entity
in that chunk. The local block position is passed as a “local block position hash
code”, which is an integer which codes the lbp. See Section 9.5.1 for how to
use the functions std.lbph to lbp and std.lbp to lbph to convert back and forth
between local block positions and local block position hash codes.

11.3.1 p.on touch

void on_touch(int level, BlockPos bp);

Let R be the touch distance of the basic entity (see the function get touch dist).
When the player’s eye is within R units of the center of the basic entity, the
basic entity’s on touch function will be called.

So suppose the basic entity Lua script grenade box.lua includes the following:

CHAPTER 11. BASIC ENTITY LUA SCRIPTS 72

function p.on_touch(level, bp)

local num_grenades_old = ga_get_i("num_grenades")

local num_grenades_new = num_grenades_old + 10

ga_set_i("num_grenades", num_grenades_new)

end

When the player is sufficiently close to the grenade box, then the on touch
function of the grenade box will be called and this will give the player 10
grenades.

11.3.2 p.get can use

bool get_can_use(int level, BlockPos bp);

The player is able to “use” certain entities. When the player is relatively
close to a basic entity, is looking at the entity, and the player presses their
“use key”, then the game asks the entity if it can be used (via this get can use
function).

Here is part of a basic entity Lua script which makes it so the entity can
only be used if the player is at most 2.0 units from the basic entity:

function p.get_can_use(level, bp)

local dist = ga_block_dist_to_viewer(level, bp)

return (dist < 2.0)

end

11.3.3 p.get use msg

string get_use_msg(int level, BlockPos bp);

When the player looks at a basic entity (and is close enough), a text message
is displayed at the center of the screen. The function get use msg determines
this message. If this function returns the empty string, then no text will be
displayed. Here is code for the grenade box.lua lua script that displays the text
“10 grenades”. The text will be in green if the player can use the box to get
more grenades, and it will be in red if the player already has the max number
of grenades in their inventory.

function p.get_use_msg(level, bp)

local max_grenades = 100

local player_grenades = ga_get_i("num_grenades")

local color_str = ""

if(player_grenades < max_grenades) then

color_str = "^x00ff00" --Green.

else

color_str = "^xff0000" --Red.

end

return color_str + " 10 grenades"

end

CHAPTER 11. BASIC ENTITY LUA SCRIPTS 73

11.3.4 p.on use

void on_use(int level, BlockPos bp);

If the p.get can use function returns true and the player uses the basic entity,
then the on use function is called.

function p.on_use(level, bp)

local num_grenades_old = ga_get_i("num_grenades")

local num_grenades_new = num_grenades_old + 10

ga_set_i("num_grenades", num_grenades_new)

end

11.3.5 p.on telekinesis

void on_telekinesis(int level, BlockPos bp);

When the player uses their “telekinesis ability”, all entities that are visible to
the player and not too far away will have their p.on telekinesis function called.

This p.on telekinesis function may be removed from future versions of the
game, in place of telekinesis being something completely soft coded by the pack-
age (instead of something that is part of the engine).

11.4 An example

Here is the full code for a grenade box.lua basic entity Lua script. The player
can pick up the grenade box by either 1) touching it, 2) using it, or 3) using
telekinesis.

function p.get_mesh() return "small_box" end

function p.get_mesh2() return "" end --Not needed.

function p.get_pulsates() return true end --Not needed.

function p.get_scale() return 1.0 end --Not needed.

function p.get_touch_dist() return 1.5 end

--This function actually gives the player grenades.

function p.payload()

local max_grenades = 100

local num_grenades_old = ga_get_i("num_grenades")

local num_grenades_new = num_grenades_old + 10

if(num_grenades_new > max_grenades) then

num_grenades_new = max_grenades

end

ga_set_i("num_grenades", num_grenades_new)

--Removing the entity for one hour.

ga_bent_remove_temp(level, bp, 60*60)

CHAPTER 11. BASIC ENTITY LUA SCRIPTS 74

end

function p.get_can_use(level, bp)

local max_grenades = 100

local player_grenades = ga_get_i("num_grenades")

if(player_grenades >= max_grenades) then return false end

local dist = ga_lbp_dist_to_viewer(chunk_id, lbp_hash)

if (dist > 5.0) then return false end

return true

end

function p.get_use_msg(level, bp)

local can_use = p.get_can_use(chunk_id, lbp_hash)

if can_use then

color_str = "^x00ff00" --Green.

else

color_str = "^xff0000" --Red.

end

return color_str .. " 10 grenades"

end

function p.on_use(int chunk_id, int lbp_hash)

p.payload(chunk_id, lbp_hash)

end

function p.on_touch(int chunk_id, lbp_hash)

p.payload(chunk_id, lbp_hash)

end

function p.on_telekinesis(int chunk_id, lbp_hash)

p.payload(chunk_id, lbp_hash)

end

Chapter 12

Moving Entity Lua Scripts

A moving entity (MEnt) exists within a chunk, but it can move from one chunk
to another. Every moving entity is said to be “in” a unique chunk.

Moving Entity Lua Scripts are put in the folder MovingEnts (in your pack-
age’s top folder).

12.1 Roaming vs Non-Roaming Moving Entities

Moving entities are put into major categories: roaming and non-roaming. Roam-
ing moving entities are ments that are created during game play by the usual
game system. Non-roaming moving entities, on the other hand, are the same
thing as moving entities that were originally created from procedural world
generation.

A roaming ment only exists for a certain amount of time, and then it van-
ishes completely (leaving nothing behind). A non-roaming ment (a ment from
procedural world generation) can be modified and these modifications are stored
(for a certain amount of time).

Consider a troll monster ment that comes from procedural world generation
(so it is non-roaming). If the player kills the troll, then it will remain removed
from the world for a certain amount of time. However the troll will respawn
after a certain amount of time. So if the player kills the troll, walks away for a
minute, and then comes back, the troll will still be gone. However if the player
kills the troll, walks away for many hours, and then comes back, then the troll
will have respawned.

12.2 Type IDs, Instance IDs, and Code IDs

Every moving entity type has an id (its “type id”). Every instance of a moving
entity has an instance id (its “inst id”). However these only refer to moving
entities that exist in the active chunk tree. When we save the game, we do not
save the instance ids of moving entities. Instead we save their “code ids”.

75

CHAPTER 12. MOVING ENTITY LUA SCRIPTS 76

When a moving entity is procedurally generated (when a chunk is procedu-
rally generated), it is assigned as pseudo random code id. If the chunk is created
a second time it will be assigned the same code id. That is, this explains how
non-roaming moving entities get their code ids. On the other hand, when a
roaming moving entity is created, it is assigned a truly random code id. Roam-
ing moving entities have positive code ids whereas non-roaming moving entities
have negative code ids.

12.3 Moving Entity Lua Script Module Func-
tions

Here are the (module) functions that can exist in Moving Entity Lua Scripts.
These functions are called by the game engine.

//---

// Called During (Type) Initialization

//---

void type_init(int type_id);

//---

// Called During Main Game

//---

void on_add_to_live_world(

int inst_id);

void on_update(

int inst_id, float elapsed_time, float elapsed_level_time);

void on_alarm(

int inst_id, string alarm_name);

void on_die(

int inst_id);

void on_too_fine(

int inst_id, int fine_chunk_id, Vector fine_offset);

bool on_block_hit(

int inst_id, int level,

BlockPos bp, Vector lp,

int normal_side, Vector normal);

bool on_ment_hit(

int hitter_inst_id, int hittie_inst_id,

int level, Vector lp,

Vector normal);

void on_level_travel(

int inst_id, int level,

Vector lp_start, Vector lp_end);

void on_closest(

int inst_id,

CHAPTER 12. MOVING ENTITY LUA SCRIPTS 77

float dist_to_viewer,

Vector dir_to_viewer);

bool get_can_use(

int inst_id);

string get_use_msg(

int inst_id);

void on_use(

int inst_id);

12.3.1 type init

void type_init(int type_id);

The type init function of each moving entity is called exactly once while the
package is being loaded (not during main game play). Only the Initialization
Lua API is available when this type init is called (there is a chapter devoted to
that API in this manual). The type init function is passed an integer number
which identifies the moving entity type. Here is what the type init function
might look like for a troll monster moving entity:

function p.type_init(tid)

ia_ment_new_static_var_i(tid, "max_health", 200)

ia_ment_new_var_i(tid, "health", 200, 60.0 * 60.0)

ia_ment_set_builtin_var_f(tid, "__radius", 2.5);

end

Here ia ment new static var is a function that is part of the Initialization
Lua API. The call to that function creates a new variable called “max health”
that is associated to the moving entity type.

The call to the function ia ment new var i creates a new variable “health”
associated to every instance of the moving entity.

Moving entities also have built-in variables that always exist. The call to
the function ia ment set builtin var f changes the built-in variable “ radius” to
“2.5”. Later in this chapter we list all the built-in variables and explain what
they do.

12.3.2 on add to live world

void on_add_to_live_world(int inst_id);

When a moving entity is added to the active chunk tree, the on add to live world
is called. There is one other time this function is called. Every chunk in the
active chunk tree is either active or passive. A passive chunk is basically asleep:
it does not get updated. When a passive chunk is changed to become active,
the on add to live world of each moving entity in the chunk is called.

Something you might want to put into the on add to live world function are
calls to set “alarms”.

CHAPTER 12. MOVING ENTITY LUA SCRIPTS 78

12.3.3 on update

void on_update(

int inst_id, float elapsed_time, float elapsed_level_time);

The game updates the world about 25 times per second. We call these
“discrete updates”. If a chunk (in the active chunk tree) is active, then during
each discrete update the chunk gets updated. When a chunk is updated, the
on update function of every moving entity in the chunk is called.

The elapsed time is how much time has passed since the last discrete update.
Every level (level of the chunk tree) has its own time system. Time on coarser
levels passes slower. The elapsed level time is how much time has elapsed on
the level that the moving entity is in.

12.3.4 on alarm

void on_alarm(

int inst_id, string alarm_name);

The engine maintains a collection of “alarms”. A moving entity alarm is a
triple (inst id, alarm name, time) where inst id is the instance id of a moving
entity, alarm name is a string, and time is a time (either in game time or in
a level’s time). The time is when the alarm should “go off”. When a moving
entity type alarm goes off, the engine calls back the function p.on alarm of the
moving entity with instance id inst id.

Here is example code for the on alarm function. It deals 10 damage to the
moving entity and then sets another alarm.

function p.on_alarm(inst_id, alarm_name)

if(alarm_name == "poison") then

local health = ga_ment_get_i(inst_id, "health")

health = health - 10

ga_ment_set_i(inst_id, "health", health)

local cur_time = ga_get_game_time()

local next_time = cur_time + 1.0 --One second in the future.

ga_ment_set_alarm(inst_id, next_time, "poison")

end

end

The ga ment set alarm function is described in the chapter about the Game
Lua-to-C API. Note that there is also the function ga ment set alarm level,
which sets an alarm that goes off at a given level time (as opposed to a game
time).

12.3.5 on die

void on_die(int inst_id);

CHAPTER 12. MOVING ENTITY LUA SCRIPTS 79

If the moving entity has a variable called “health”, then when this variable
is first ≤ 0 during a discrete update, then the on die function will be called.

This is an example of what the function might look like:

function p.on_die(inst_id)

--Dropping some gold.

local level = ga_ment_get_i(inst_id, "__level")

local lp = ga_ment_get_lp(inst_id) --The position (level position).

local bp = std.lp_to_bp(lp)

local exist_length = 5*60 --Will exist for 5 minutes.

ga_bent_add(level, bp, "gold_10", exist_length)

end

The on die function may be removed in future versions of the game.

12.3.6 on too fine

void on_too_fine(

int inst_id, int fine_chunk_id, Vector fine_offset);

Every moving entity has a max and a min level that it can exist on. The
max level L is the finest level on which the entity can exist. If we attempt to
move the entity to an even finer level (level L+1, then the on too fine function
is called. This function is passed the offset of the moving entity in the fine chunk
on level L+ 1 (as well as the chunk id of that chunk).

12.3.7 on block hit

bool on_block_hit(

int inst_id, int level,

BlockPos bp, Vector lp,

int normal_side, Vector normal);

This is called when the moving entity hits a block.
The function should return true iff the hit is “terminal”, meaning the moving

entity should not move any farther. Also, if the block hit is terminal, the moving
entity will be removed afterwards. However right now the engine ignores the
return value of on block hit and pretends that the function returns true. So all
block hits are terminal. In the future we may make the engine more general,
where there can be non-terminal block hits.

The arguments level and bp describe the position of the block that is being
hit. Recall that bp has the three integer members x,y,z. The vector lp describes
the position of the hit. It is the “level position” (the position of the hit in
the given level). The Vector normal is a length one vector that is normal to
the surface of intersection. That is, the normal vectors points out from the
intersection point away from the surface. The normal side integer describes the
side of the block that was hit. Recall that 0 = x pos, 1 = x neg, 2 = y pos, 3
= y neg, 4 = z pos, 5 = z neg.

CHAPTER 12. MOVING ENTITY LUA SCRIPTS 80

Here is the code for a moving entity which is a projectile that when it hits a
block, it creates a stone block adjacent to the block of impact. The stone block
will exist for 60 seconds.

function p.on_block_hit(

inst_id,

level, bp, lp,

normal_side, normal)

--

--Getting the adjacent block position.

local adj_bp = std.get_adj_bp(bp, normal_side)

--Adding a stone block that will

--exist for 60 seconds.

ga_block_change_rl(level, adj_bp, "stone", 60.0)

return true --Terminal hit.

end

12.3.8 on ment hit

bool on_ment_hit(

int hitter_inst_id, int hittie_inst_id,

int level, Vector lp,

Vector normal);

This is called when the moving entity (the hitter) hits another moving entity
(the hittie).

The function should return true iff the hit is “terminal”, meaning the moving
entity should not move any farther. Also, if the block hit is terminal, the moving
entity will be removed afterwards.

The arguments level and lp describe the position of the block that is being
hit. The vector lp describes the position of the hit. It is the “level position”
(the position of the hit in the given level).

The Vector normal is a length one vector that is normal to the surface of
intersection. This could be used for blood spurting, say if the hitter is a bullet
and the hittie is a monster.

The Lua function on ment hit can optionally call

ga_return_b("remove", false)

before the function returns to make it so the ment is not removed by the engine
(even if on ment hit function returns true).

Here is code for a bullet moving entity. If the hittie has a health variable, it
will deal 10 damage to the hittie.

bool function p.on_ment_hit(

CHAPTER 12. MOVING ENTITY LUA SCRIPTS 81

hitter_inst_id, hittie_inst_id,

level, lp, normal)

--

local hittie_type = ga_ment_get_type(hittie_inst_id)

if ga_ment_var_exists(hittie_type, "health") then

local health = ga_ment_get_i(hittie_inst_id, "health")

health = health - 10

ga_ment_set_i(hittie_inst_id, "health", health)

end

--It is NOT a terminal hit:

--the bullet can pass through this monster and

--go on to hit other monsters.

return false

12.3.9 on level travel

void on_level_travel(

int inst_id, int level,

Vector lp_start, Vector lp_end);

This function is called when a moving entity moves from one point (lp start)
to another (lp end), all when the particle is on a certain level.

Here is code for a bullet which leaves a trail of smoke. The key is the function
ga particle trail, which creates a trail of particles.

void on_level_travel(

int inst_id, int level,

Vector lp_start, Vector lp_end)

--

local args = {}

args.level = level

args.pos_start = lp_start

args.pos_end = lp_end

args.ttl_min = 0.5

args.ttl_max = 0.5

args.size_min = 0.1

args.size_max = 0.1

args.color = std.vec(1.0, 1.0, 1.0)

args.fade_time_min = 0.5

args.fade_time_max = 0.5

args.speed_min = 0.0

args.speed_max = 0.0

args.tex = "particle_2"

args.radius_min = 0.0

args.radius_max = 0.0

args.avg_len = 1.0

CHAPTER 12. MOVING ENTITY LUA SCRIPTS 82

args.use_min_dist = false

ga_particle_trail(args)

end

12.3.10 on closest

void on_closest(

int inst_id,

float dist_to_viewer,

Vector dir_to_viewer);

If this function exists in the moving entity script, then the following will
happen: every discrete update the engine will calculate the distance from the
moving entity to the viewer (the player). As long as this distance goes down,
nothing will happen. However once this distance increases, the moving entity’s
on closest function will be called.

This can be used, for example, to have a rocket explode when it is at its
closest point to the player.

For convenience, this function is passed both the distance to the player and
also a length one Vector which points from the moving entity to the viewer.

12.3.11 get can use

bool get_can_use(

int inst_id);

Moving entities, just like basic entities, can be “used”. This function deter-
mines whether or not the moving entity can be used. If this function is missing,
then the entity cannot be used.

function p.get_can_use(inst_id)

--Getting the global variable for player health.

local player_health = ga_get_i("health")

if(player_health < 100) then

return true --Can use the entity.

else

return false --Cannot use the entity.

end

end

12.3.12 get use msg

string get_use_msg(

int inst_id);

When the player looks at a moving entity, the string that is returned from
this function is displayed in the center of the screen. This happens even if the

CHAPTER 12. MOVING ENTITY LUA SCRIPTS 83

get can use function returns false. When the get use msg returns the empty
string, no message is displayed when the player looks at the moving entity. If
the get use msg, then that is equivalent to the function existing and always
returning the empty string.

Continuing the example from the subsection about get can use, here is code
for a “healing shrine” which heals the player if their health is below 100:

function p.get_use_str(inst_id)

local can_use = get_can_use(inst_id)

if(can_use) then

return "Use this to get 100 health"

else

return "You already have full health"

end

end

12.3.13 on use

void on_use(

int inst_id);

When the player attempts to “use” a moving entity, first the get can use
function of the entity is called. If that function returns true, then this on use
function is called.

Continuing our example from the last two subsections, here is code for a
“healing shrine”:

function p.on_use(inst_id)

--get_can_use must have returned true.

--Setting the player health to 100.

ga_set_i("health", 100)

end

12.4 Moving Entity Vars Overview

Every moving entity type has a list of variables associated to it. Each variable
has a type, being either “bool”, “int”, “float”, “vector”, and “string”. This list
of variables must be specified during the package initialization phase. That is,
no new moving entity variables can be added during normal game play.

Each variable has a default value (associated to the moving entity type).
A moving entity (instance) only stores a variable if that variable has a value
different from its default value (we use a sparse system for storing variables).

CHAPTER 12. MOVING ENTITY LUA SCRIPTS 84

12.4.1 Static variables

Some of these variable values are only associated to the “type” of moving entity
itself. These are called static variables. We can think of a static variable as a
normal variable but it only has a default value.

On the other hand, non-static variable values are associated to each moving
entity instance. These values can be different from their default value.

The value of a static variable for a moving entity can only be set during the
package’s initialization phase. Similarly, the default value of non-static variables
for a moving entity can also only be set during the package’s initialization phase.

12.4.2 Revert lengths

Every non-static variable has a revert length (rl). Once a non-static variable
is changed, then (assuming it is not changed again) after the revert length many
seconds have passed, the variable will be reset to its default value.

Note that when a variable is reverted, this only finally takes place when the
player leaves the chunk of the moving entity so that the chunk is removed from
the active chunk tree.

12.4.3 Built-in variables

Some moving entity variables are automatically created by the engine. All these
variables start with double underscores. Take the built-in variable mesh for
example. This is created by the engine, but the user can modify this during
initialization by calling

ia_ment_set_builtin_var_i(tid, "__mesh", "sphere_100_poly");

This modifies the built-in variable.
It is currently impossible to modify the revert length of a built-in variable,

but this may change in later versions of the game.
Both static and non-static built-in variables can be changed like this. How-

ever some built-in variables are read-only. A read-only variable should not be
modified. The engine may modify read-only variables, but you may not.

If a built-in read-only variable is modified, this will result in undefined behav-
ior (although in future versions of the game we may simply make the program
exit if any read-only variables are illegally modified).

12.5 List of all moving entity built-in vars

Here is a list of all the built-in variables for moving entities. We also list the
default value of each variable and also the revert length (rl). Some of the
variables are static.

CHAPTER 12. MOVING ENTITY LUA SCRIPTS 85

static bool __disable_saving = false

READ_ONLY bool __from_world_gen = false (rl = one million minutes)

static float __ttl = -1.0

static float __ttl_grounded = 60*60 (one hour)

READ_ONLY float __game_end_time = -1.0 (rl = one million minutes)

float __respawn_length = 60*60 (one hour) (rl = one million minutes)

static int __extra_min_levels = 0

static int __extra_max_levels = 0

READ_ONLY int __start_level = -1 (rl = one minute)

READ_ONLY int __min_level = -1 (rl = one minute)

READ_ONLY int __max_level = -1 (rl = one minute)

READ_ONLY int __level = -1 (rl = one minute)

READ_ONLY int __chunk_id = -1 (rl = one minute)

READ_ONLY Vector __offset = Vector(7.5, 7.5, 7.5) (rl = one million minutes)

READ_ONLY Vector __offset_old = Vector(7.5, 7.5, 7.5) (rl = one million minutes)

Vector __vel = Vector(0.0, 0.0, 0.0) (rl = one million minutes)

static string __mesh = ""

int __team_id_source = 0 (rl = one minute)

int __team_id_target = 0 (rl = one minute)

bool __solid_wrt_player = false (rl = one minute)

bool __collides = true (rl = one minute)

float __radius = 1.0 (rl = one minute)

bool __radius_lvlinv = false (rl = one minute)

string __tex_override = "" (rl = one minute)

bool __homing = false (rl = one minute)

READ_ONLY int __homing_target = -1 (rl = one minute)

float __turn_speed = 1.0 (rl = one minute)

bool __turn_towards_player = false (rl = one minute)

bool __turning_disabled = false (rl = one hour)

bool __mesh_fixed_frame = false (rl = one minute)

Vector __mesh_fixed_frame_v1 = Vector(1.0, 0.0, 0.0) (rl = one minute)

Vector __mesh_fixed_frame_v2 = Vector(0.0, 1.0, 0.0) (rl = one minute)

Vector __mesh_fixed_frame_v3 = Vector(0.0, 0.0, 1.0) (rl = one minute)

CHAPTER 12. MOVING ENTITY LUA SCRIPTS 86

READ_ONLY bool __towards_viewer_valid = false (rl = one minute)

READ_ONLY Vector __towards_viewer_vec = Vector(0.0, 0.0, 0.0) (rl = one minute)

READ_ONLY Vector __towards_viewer_dir = Vector(0.0, 0.0, 1.0) (rl = one minute)

READ_ONLY float __dist_to_viewer = -1.0 (rl = one minute)

READ_ONLY float __dist_to_viewer_old = -1.0 (rl = one minute)

string __death_anim = "" (rl = one minute)

float __death_anim_start = -1.0 (rl = one minute)

float __death_anim_end = -1.0 (rl = one minute)

READ_ONLY int __death_anim_stage = 0 (rl = one minute)

12.6 Explanation of all moving entity built-in
vars

12.6.1 disable saving

static bool __disable_saving = false

For every variable, you can disable whether on not it is saved to file when
it is changed. This is described in Section 15.2.4. The variable disable saving,
when true, will make it so all variables are disabled from being saved. Indeed,
when saving the game and exiting, there will be no trace left behind of a moving
entity where disable saving is true.

12.6.2 from world gen

READ_ONLY bool __from_world_gen = false (rl = one million minutes)

This variable is true iff the moving entity was created in procedural world
generation code. This variable is saved to file in a unique way.

Moving entities where from world gen is false are also called roaming.
For a moving entity where from world gen is true (a non-roaming entity), we
break into two categories: grounded non-roaming entities and non-grounded
(or moved) non-roaming entities. A non-roaming entity is called grounded iff
it is still in the chunk where it was procedurally generated. Otherwise, it has
moved from its original chunk. This version of the game does not support
non-roaming entities moving from their original chunk. In other words, all non-
roaming entities must be grounded. This may change in a later version of the
game.

12.6.3 ttl, ttl grounded, game end time

static float __ttl = -1.0

static float __ttl_grounded = 60*60 (one hour)

READ_ONLY float __game_end_time = -1.0 (rl = one million minutes)

CHAPTER 12. MOVING ENTITY LUA SCRIPTS 87

ttl should be more precisely called “ ttl roaming”, but we call it ttl
because it is the most common type of ttl which is modified. ttl is the length
of time (in seconds) a roaming entity exists after it is created.

Similarly, ttl grounded is the length of time (in seconds) a non-roaming
moving entity exists (a moving entity created from procedural world generation)
before it is reverted back to its original state. To make life simple, it makes
sense to leave ttl grounded as one hour: all changes to a moving entity will
be reverted in one hour. Note that once all variables of a moving entity have
reverted to their default value, then the moving entity itself is automatically
reverted by the engine. So one hour is an upper bound for how long it will take
a moving entity to be fully reverted.

If a moving entity is roaming, then let length = ttl, and if a moving entity
is non-roaming then let length = ttl grounded. The variable game end time
is set when a moving entity is created and it is set to

__game_end_time = current_game_time + length;

So if the moving entity is roaming and the game end time is reached, the
moving entity will be removed. On the other hand if it is non-roaming and
the game end time is reached the moving entity will be reverted back to its
original state.

Note that game end time is in game time, not in a level’s time.

12.6.4 respawn length

float __respawn_length = 60*60 (one hour) (rl = one million minutes)

respawn length only applies to non-roaming entities (entities created by
procedural world generation). Non-roaming entities get reverted at the game
time game end time. However it is possible for non-roaming moving entities
to be “removed” beforehand.

Once we remove a non-roaming moving entity, then it will remain gone and
will not respawn for respawn length many seconds. After removing a non-
roaming entity, in the chunk where the entity was originally created we leave a
tag which says that the moving entity has been removed. In part of this tag, we
say when the the moving entity will respawn. So if you kill a non-roaming troll
that is in its original chunk (that has a one hour respawn time), walk away for a
minute, then come back, then the troll will not be there (it will not be recreated
by procedural world generation). However if you kill the troll, walk away for
two hours and then return, then it will be there (it will have respawned).

12.6.5 extra min levels, extra max levels

static int __extra_min_levels = 0

static int __extra_max_levels = 0

Both extra min levels and extra max levels should be non-negative in-
tegers. For every moving entity, there is a min and a max level where it can

CHAPTER 12. MOVING ENTITY LUA SCRIPTS 88

exist. The variable start level is set to the level of the starting chunk where
the moving entity was created. Then immediately afterwards the min level
and max level variables are set as follows:

__min_level = start_level - __extra_min_levels

__max_level = start_level + __extra_max_levels

12.6.6 start level, min level, max level

READ_ONLY int __start_level = -1 (rl = one minute)

READ_ONLY int __min_level = -1 (rl = one minute)

READ_ONLY int __max_level = -1 (rl = one minute)

These are described in the previous subsection.

12.6.7 level, chunk id

READ_ONLY int __level = -1 (rl = one minute)

READ_ONLY int __chunk_id = -1 (rl = one minute)

These describe the level that the moving entity is in together with the
chunk id of the chunk which contains the moving entity. These variables are
not saved and loaded in the usual way.

12.6.8 offset, offset old

READ_ONLY Vector __offset = Vector(7.5, 7.5, 7.5) (rl = one million minutes)

READ_ONLY Vector __offset_old = Vector(7.5, 7.5, 7.5) (rl = one million minutes)

Let’s say the moving entity is in chunk C. The variable offset describes
the position of the entity inside chunk C. The variable offset old describes the
position of the entity during the last discrete update (but still with respect to
chunk C). The reason we have both offset and offset old is because during
rendering, we render a moving entity as an interpolation between two updates.
So even though the game has only 25 discrete updates per second, we can achieve
a higher frame rate by interpolation.

These variables are not saved and loaded in the usual way. For example,
the “base chunk” is the unique chunk that contains the moving entity that
is on level min level. When we save a game we save a moving entity in the
chunk file associated to the base chunk of the entity. The offset that is stored
is relative to that base chunk.

12.6.9 vel

Vector __vel = Vector(0.0, 0.0, 0.0) (rl = one million minutes)

This is the velocity of the moving entity. During each discrete update phase,
the engine will attempt to move the moving entity according to this velocity.

CHAPTER 12. MOVING ENTITY LUA SCRIPTS 89

12.6.10 mesh

string __mesh = ""

The mesh variable determines the mesh name to be used for the moving
entity. The corresponding mesh should be listed in “Meshes/mesh names.txt”.
Note that the file mesh names.txt associates each mesh name to a wavefront.obj
file (for the mesh itself) as well as a texture name.

When the package is loaded, the mesh variable for a moving entity type
is set to the name of that moving entity. So for example, if the moving entity
troll.lua does not define mesh, then by default the mesh variable for troll
moving entities is “troll”.

If mesh is the empty string, then the moving entity will be invisible.

12.6.11 team id source, team id target

int __team_id_source = 0 (rl = one minute)

int __team_id_target = 0 (rl = one minute)

Team 0 is neutral, team 1 is the player, team 2 is typical monsters. Typically
for the hitter entity to attack a hittie entity, then 1) the hitter must have a non-
zero source team id, 2) the hittie must have a non-zero target team id, and 3)
the source team id and the target team id must be different.

Consider a monster’s rocket projectile. It would have team id source =
2. If that rocket has team id target = 0, then the player cannot shoot the
rocket down. On the other hand, if the rocket has team id target = 2, then
the player can shoot down the rocket.

Note that in terms of one moving entity hitting another in the usual collision
detection system, it is up to you to enforce this convention about the team source
id of the hitter and the team target id of the hittie. That is, the on ment hit
function of the hitter moving entity should look at these team ids and if there
is a mismatch then the function should return false (specifying that the hit is
not terminal).

12.6.12 solid wrt player, collides

bool __solid_wrt_player = false (rl = one minute)

bool __collides = true (rl = one minute)

The variable solid wrt player is true iff the player cannot move through
the moving entity. When this is true, physically the moving entity is modeled
as a sphere with radius radius.

When the variable collides is true, the moving entity can collide with other
moving entities and blocks. This will result in the on block hit and on ment hit
functions of the moving entity being called when there is a collision. Collisions
are detected by moving the moving entity while keeping everything else in the
world still.

CHAPTER 12. MOVING ENTITY LUA SCRIPTS 90

12.6.13 radius, radius lvlinv

float __radius = 1.0 (rl = one minute)

bool __radius_lvlinv = false (rl = one minute)

Every moving entity is modeled as a sphere from the point of view of the
engine. The variable radius and radius lvlinv determine the radius of this
sphere.

Specifically, suppose radius lvlinv is true. Then no matter what level the
moving entity is on, it will have radius radius. lvlinv stands for “level invari-
ance”.

On the other hand suppose radius lvlinv is false. Then when the moving
entity is on its starting level, it will have radius radius. However when the
moving entity moves either up or down in level, the radius will change accord-
ingly. For example, when the moving entity moves from level 53 to 54, its radius
will be scaled by a factor of 16.0. This way when the moving entity moves from
one level to another, it will look smooth and the player will not notice any
change.

12.6.14 tex override

string __tex_override = "" (rl = one minute)

Recall that the mesh name mesh of the moving entity is associated to a
wavefront.obj file and a texture name. These associations can be found in

“Meshes/mesh names.txt”.

When tex override is not the empty string, the same wavefront.obj is used
but instead the string tex override will be used for the texture name. When
tex override is the empty string, the original texture name associated to the

mesh name is used.
This can be used for creating a freezing gun which, when it hits a monster,

it sets the monster’s tex override string to the name of an ice texture.

12.6.15 homing, homing target

bool __homing = false (rl = one minute)

READ_ONLY int __homing_target = -1 (rl = one minute)

When homing is true, the moving entity will turn towards targets (but still
with the same speed). The variables team id source and team id target are
used for this. For example, when homing is true and team id source is 1 (1
represents the player), then the moving entity will be attracted to all moving
entities whose team id target variables are 2.

The variable homing target is used to track what moving entity the current
moving entity is homing towards. If this is ≥ 0, the moving entity is homing
towards the moving entity with that instance id. If homing target is -1 then

CHAPTER 12. MOVING ENTITY LUA SCRIPTS 91

the moving entity has not yet tried to acquire a target. If homing target is -2,
then the moving entity tried to acquire a target but failed.

12.6.16 turn speed, turn towards player, turning disabled

float __turn_speed = 1.0 (rl = one minute)

bool __turn_towards_player = false (rl = one minute)

bool __turning_disabled = false (rl = one hour)

When a moving entity is put in the world, it starts with a random orientation.
If turn towards player is true, then the entity will turn towards the player with
a speed specified by turn speed (1.0 is the default). When turning disabled
is true, turning is disabled.

12.6.17 mesh fixed frame, mesh fixed frame vX

bool __mesh_fixed_frame = false (rl = one minute)

Vector __mesh_fixed_frame_v1 = Vector(1.0, 0.0, 0.0) (rl = one minute)

Vector __mesh_fixed_frame_v2 = Vector(0.0, 1.0, 0.0) (rl = one minute)

Vector __mesh_fixed_frame_v3 = Vector(0.0, 0.0, 1.0) (rl = one minute)

When mesh fixed frame is true, the orientation of the moving entity will
be overridden. In this case, the orientation is specified by the three vec-
tors mesh fixed frame v1, mesh fixed frame v2, and mesh fixed frame v3
(which should be orthogonal and of length one).

12.6.18 towards viewerXXX and dist to viewerXXX

READ_ONLY bool __towards_viewer_valid = false (rl = one minute)

READ_ONLY Vector __towards_viewer_vec = Vector(0.0, 0.0, 0.0) (rl = one minute)

READ_ONLY Vector __towards_viewer_dir = Vector(0.0, 0.0, 1.0) (rl = one minute)

READ_ONLY float __dist_to_viewer = -1.0 (rl = one minute)

READ_ONLY float __dist_to_viewer_old = -1.0 (rl = one minute)

Not only are these read only, but you should not even read from these.
Instead you should use the following Game Lua-to-C API functions (but that
may change in a later version of the game):

Vector ga_ment_get_var_special_vec_to_viewer(int inst_id);

float ga_ment_get_var_special_dist_to_viewer(int inst_id);

The variables towards viewerXXX and dist to viewer are used to cache
values which these functions can return. The purpose of having both dist to viewer
and dist to viewer old is so that the on closest function can be called appro-
priately.

Note: none of these variables are saved to file.

CHAPTER 12. MOVING ENTITY LUA SCRIPTS 92

12.6.19 death animXXX

string __death_anim = "" (rl = one minute)

float __death_anim_start = -1.0 (rl = one minute)

float __death_anim_end = -1.0 (rl = one minute)

READ_ONLY int __death_anim_stage = 0 (rl = one minute)

When a moving entity “dies”, it can optionally use a “death animation”.
Right now there is only one death animation: “dark hole”. When this is set,
the moving entity will gradually shrink until it is a single point. The time
death anim start (in game time) specifies when the shrinking starts and the
death anim end specifies when the shrinking ends (and the entity has become

a single point). The variable death anim stage is used by the engine to track
which stage of the death animation we are in.

Here is code for a “black hole bullet” moving entity which, when it hits
another moving entity, it will cause that entity to shrink to a point.

bool function p.on_ment_hit(

hitter_inst_id, hittie_inst_id,

level, lp, normal)

--

local hittie_type = ga_ment_get_type(hittie_inst_id)

if not ga_ment_var_exists(hittie_type, "health") then return end

ga_ment_set_i(hittie_inst_id, "health", 0) --Killing the hittie.

--Special dark hole death animation.

--The hittie entity will shrink down to a point

--for the next 2 seconds.

ga_ment_set_s(hittie_inst_id, "__death_anim", "dark_hole")

local game_time = ga_get_game_time()

ga_ment_set_f(hittie_inst_id, "__death_anim_start", game_time)

ga_ment_set_f(hittie_inst_id, "__death_anim_end", game_time + 2.0)

--It is a terminal hit

--(the bullet will stop now).

return true

end

Chapter 13

Window Lua Scripts

13.1 Introduction

There are three types of windows:

� Main menu windows

� Game windows

� HUD windows

All windows Lua scripts are put in the Windows directory of the package.

13.1.1 Window IDs (WIDs)

Every window has a window id (a “wid”). Consider a game window, for example.
The first time a game window associated to a given window Lua script is pushed
onto the game window stack, that window will be assigned a wid.

Note that a wid is associated to the window Lua script itself, not
to the instance of the window.

So if we add a window to the game window stack, then pop it off, then push
it on again, it should be assigned the same wid in the end.

13.1.2 Stacks vs Sets

The main menu windows are put into a “stack”. Only the top window in this
stack is rendered, and only the top window in this stack is given user input.
Windows can be “pushed” into or “popped” from this stack.

Game windows are also put into a similar stack.
HUD windows, on the other hand, exist in a “set”. All HUD windows in the

set are rendered when the player is in the game (and there are no windows in
the main menu window stack or the game window stack). Care must be taken
to specify in which order the HUD windows are rendered (one is rendered on
top of another).

93

CHAPTER 13. WINDOW LUA SCRIPTS 94

13.2 Main Menu Windows

Main menu windows can be accessed from the “package’s top menu”. That is,
when you are in a game, if you go to MAIN MENU → OPTIONS → PACKAGE
TOP MENU you will be able to access the top most main menu window. This
top most main menu window script MUST be called

“main menu.lua”.

Here are the main menu window lua script module functions:

//---

// Main Menu Windows Module Functions

//---

void on_start(int wid);

void on_end(int wid);

void process_input(int wid);

void render(int wid);

13.2.1 p.on start

void on_start(int wid);

Consider the lua script “my window.lua”. When a window of this type is
pushed onto the main menu window stack, then this on start function will be
called. This function is passed the window id (wid) of the window.

Note that it is intended that there is at most one instance of a
window for each window Lua script.

Here is what the p.on start function of my window.lua might look like:

function p.on_start(wid)

ga_play_sound_menu("chimes_sound")

end

Here the on start function is playing the sound “chimes sound”. There
are two ways to play sounds (that are not “music”): 1) ga play sound and
2) ga play sound menu. The ga play sound functions plays a “game” sound
whereas the ga play sound menu functions plays a “menu” sound. When the
player is in a menu, all game sounds are paused (and so only menu sounds can
be played).

13.2.2 p.on end

void on_end(int wid);

Consider the lua script “my window.lua”. When a window of this type is
popped from the main menu window stack, then this on end function will be
called.

CHAPTER 13. WINDOW LUA SCRIPTS 95

There is another situation when on end will be called. If W.lua is
the window on top of the main menu stack and another window is pushed on
top of it, then the p.on end function of W.lua will also be called.

Here is what the p.on end function of my window.lua might look like:

function p.on_end(wid)

ga_play_sound_menu("sad_sound")

end

13.2.3 p.process input

void process_input(int wid);

The process input function of a main menu window is called when it is time
to process user input (keyboard and mouse). It is called only if the window is
on TOP of the main menu window stack.

Here is possible code from the lua script “my window.lua”:

function p.process_input(wid)

if ga_win_key_pressed(wid, "ESC") then

local return_to_game = true

ga_main_menu_pop_all(return_to_game)

return

end

if ga_win_key_pressed(wid, "X") then

ga_exit() --Exit the program.

end

end

Here, when the my window.lua is on top of the main menu window stack, if
the player pressed the ESCAPE key then all windows on the main menu window
stack will be popped and the player will return to the game. On the other hand,
if the player pressed the X key, then the program will exit.

13.2.4 p.render

void render(int wid);

The render function of a main menu window is called when it is time to
render the window. It is called only if the window is on TOP of the main menu
window stack.

Here is possible code from the lua script “my window.lua”:

function p.render(wid)

ga_win_set_char_size(wid, 0.04, 0.08)

ga_win_txt_center(wid, 0.6, "PRESS ESCAPE TO GO BACK TO THE GAME")

ga_win_txt_center(wid, 0.3, "PRESS X TO EXIT THE GAME")

end

CHAPTER 13. WINDOW LUA SCRIPTS 96

Here the ga win set char size function sets the text character size to be such
that letters have width 0.04 and height 0.08 (1.0 is the width of the screen and
1.0 is the height of the screen).

The ga win txt center renders text which is left-to-right centered in the mid-
dle of the screen, and it has the minimum y coordinate as specified.

13.2.5 An Example

This is what the main menu.lua window script might look like:

function p.on_start(wid)

local min_y = 0.25

local max_y = 0.75

local char_w = 0.03

local char_h = 0.06

local color = std.vec(0.0, 0.5, 0.5) --RGB.

options = {

"GET FREE GOLD",

"LIST OF CHEAT CODES }

ga_win_widget_small_list_start(

wid, min_y, max_y, char_w, char_h,

color, options)

end

function p.on_end(wid)

--Nothing to do.

end

function p.process_input(wid)

local selection = ga_win_widget_small_list_process_input(wid)

local selection_str = ga_win_widget_small_list_entry(wid, selection)

if(selection_str == "GET FREE GOLD") then

ga_main_menu_push("win_get_free_gold")

return

end

if(selection_str == "LIST OF CHEAT CODES")

ga_main_menu_push("win_list_of_cheatcodes")

return

end

if ga_win_key_pressed(wid, "ESC") then

--Popping this window from the main menu window stack.

ga_main_menu_pop()

return

end

end

CHAPTER 13. WINDOW LUA SCRIPTS 97

function p.render(wid)

ga_win_set_char_size(wid, 0.04, 0.08)

ga_win_txt_center(wid, 0.85, "MAIN MENU")

--The small list widget will automatically be rendered.

end

You can read about the small list widget in Chapter 17.

13.3 Game Windows

Game Windows are basically identical to Main Menu Windows. The only main
difference is that there are two window stacks: one for each type of window.

You would use a game window if you wanted the player to look at their
inventory. You would use a main menu window if you wanted the player to be
able to change the difficulty of the game.

13.4 HUD Windows

HUD windows are similar to main menu and game windows, except they do not
have on start and on end functions. They only have process input and render
functions. These functions are only called when there are no windows in either
the main menu window stack or the game window stack.

Chapter 14

Game Lua Scripts

14.1 Introduction

Recall that packages have the folder called “Game”. One purpose of this folder
is to define helper Lua function for use in other scripts.

The second purpose is to contain the file

“top.lua”.

This top.lua script contains functions that are called by the engine at various
points in time. In this chapter we will describe these functions.

14.2 All top.lua Module Functions

//---

// Game/top.lua Module Functions

//---

void top.new_game();

void top.load_game();

void top.update()

void top.update_passive();

void top.update_discrete_pre();

void top.update_discrete_post();

string top.game_input(string str);

void top.killed_player();

void top.respawn_player();

14.3 top.new game

void top.new_game();

98

CHAPTER 14. GAME LUA SCRIPTS 99

This function is called when the player first creates a game. That is, this
function is only called once. When the player then loads the game later, the
load game function will be called (NOT the new game function). Something
you probably want to do in the new game function is search the world for a
suitable starting position for the player.

Here is what the new game function might look like (in Game/top.lua):

function p.new_game()

--Setting the heath is not needed as long

--as the globals.txt file sets it accordingly.

ga_set_i("health", 200)

--Setting body to "fly" mode

--and the camera mode to use true up.

local trans = std.vec(0.0, 0.0, 0.0)

local radius = 0.3

local use_true_up = true

ga_move_set_body_fly(trans, radius, use_true_up)

end

14.4 top.load game

void top.load_game();

The load game function is called each time the player loads the game (just
after the engine finished the load). Here is an example of what the load function
might look like:

function p.load_game()

--Adding windows to the hud.

--This is needed because when the game is loaded,

--the game and window stacks and the hud window set

--are initially empty.

ga_hud_window_add("win_hud", 0)

end

14.5 top.update

void top.update();

When the player is in normal game play, the game calls an update function
every cycle. This could be called 60 or perhaps 100 or more times per second. On
the other hand, there are also “discrete updates” which occur exactly 25 times
per second. The functions top.update discrete pre and top.update discrete post
before and after the engine performs this discrete update.

CHAPTER 14. GAME LUA SCRIPTS 100

14.6 top.update passive

void top.update_passive();

This function is called when the player is in either a game menu or a main
menu. Note that when the player is in a menu, the game time is “frozen” (the
world should stand still, for the most part).

14.7 top.update discrete pre

void top.update_discrete_pre();

This function is called just before the engine does a discrete update. Note
that there should be exactly 25 discrete updates per second (when the player is
in normal game play).

14.8 top.update discrete post

void top.update_discrete_post();

This function is called just after the engine does a discrete update. Here is
what the update discrete functions might do in Game/top.lua:

function p.update_discrete_pre()

--Nothing to do.

end

function p.update_discrete_post()

--Moving the player.

local travel = std.vec(0.0, 0.0, 0.0)

--Set the travel function depending

--on what keys are pressed...

ga_move_set_desired_travel(travel)

end

14.9 top.game input

string top.game_input(string str);

The primary way that the engine gives commands to the package is via the
game input function. This function returns output in the form of a string.

The system command
game input str

causes top.game input to be called with the input string str. This can be used
for binding key and mouse events to game actions. For example, in the file
binds.txt we can have the following line:

CHAPTER 14. GAME LUA SCRIPTS 101

PACKAGE_MOVE_JUMP SPACE.downup "" "game_input jump" ""

Then if the player pressed the space bar during normal game play, then the
command “game input jump” will be executed, which causes the top.game input
function to be called with the input string “jump”. It is up to top.game input
on how to interpret this command.

There are some commands that are called by the engine in certain circum-
stances. These command strings start and end with double underscores. For
example, game input will be passed the following strings by the engine in the
appropriate circumstances:

__game_saved__

__spiral_of_death__

__screenshot__

__screenshot_failed__

The expected response of top.game input to being passed these strings is
to display a message on the HUD to the user. “Spiral of death” refers to the
situation when it takes too long to process a discrete game update, so the engine
tries to perform several updates simultaneously to make up time.

14.10 top.killed player

int top.killed_player();

To (try to) kill the player, call the ga kill player Game Lua-to-C API func-
tion. If game.player.alive is false, nothing will happen. If god mode is on, noth-
ing will happen. Otherwise game.player.alive will be set to false and top.killed player
will be called.

14.11 top.respawn player

int top.respawn_player();

Once the player is dead, to respawn the player must call either the system
command “respawn passive” or the system command “respawn force”. Then
the engine will respawn the player (which includes placing them at their respawn
point). After all this, the engine will call the function top.respawn player. Here
is an example of what top.respawn player might look like:

function p.respawn_player()

ga_set_i("health", 100)

ga_set_i("bullets", 0)

ga_set_i("shells", 0)

ga_set_i("rockets", 0)

end

Chapter 15

The Initialization Lua-to-C
API

When the package is loaded, certain functions in lua scripts are called to initialize
various things. For example, consider a script “MovingEnts/bullet.lua”. This
has a function p.type init which is called when the package is initialized. This
function should in turn call functions that are part of the Initialization Lua-to-C
API to initialize various aspects of bullet type moving entities.

Functions in the Initialization Lua-to-C API can only be called at certain
times. One time is when the game calls bullet.type init, etc.

Note: ia stands for the “Initialization API”.

15.1 The Full Initialization Lua-to-C API

//---

// Initializing Moving Entity Types

//---

void ia_ment_new_var_b(int tid, string var, bool default_value, float revert_length);

void ia_ment_new_var_i(int tid, string var, int default_value, float revert_length);

void ia_ment_new_var_f(int tid, string var, float default_value, float revert_length);

void ia_ment_new_var_v(int tid, string var, Vector default_value, float revert_length);

void ia_ment_new_var_s(int tid, string var, string default_value, float revert_length);

void ia_ment_new_static_var_b(int tid, string var, bool value);

void ia_ment_new_static_var_i(int tid, string var, int value);

void ia_ment_new_static_var_f(int tid, string var, float value);

void ia_ment_new_static_var_v(int tid, string var, Vector value);

void ia_ment_new_static_var_s(int tid, string var, string value);

void ia_ment_set_builtin_var_b(int tid, string var, bool value);

102

CHAPTER 15. THE INITIALIZATION LUA-TO-C API 103

void ia_ment_set_builtin_var_i(int tid, string var, int value);

void ia_ment_set_builtin_var_f(int tid, string var, float value);

void ia_ment_set_var_saving(int tid, string var, bool value);

//---

// Initializing Block Types

//---

void ia_block_new_static_var_b(int tid, string var, bool value);

void ia_block_new_static_var_i(int tid, string var, int value);

void ia_block_new_static_var_f(int tid, string var, float value);

void ia_block_new_static_var_v(int tid, string var, Vector value);

void ia_block_new_static_var_s(int tid, string var, string value);

void ia_block_new_var_b(int tid, string var, bool value);

void ia_block_new_var_i(int tid, string var, int value);

void ia_block_new_var_f(int tid, string var, float value);

void ia_block_new_var_v(int tid, string var, Vector value);

void ia_block_new_var_s(int tid, string var, string value);

void ia_block_make_var_eph(int tid, string var, int rl);

void ia_block_make_var_not_eph(int tid, string var);

15.2 Moving Entity (Type) Initialization Func-
tions

These functions are intended to be called from the type init function of each
Moving Entity Lua Script. These functions all involve variables associated to a
moving entity.

There are five types of variables for moving entities: bools (b), ints (i),
floats(f), Vector(v), and strings (s). A vector is an (x,y,z) triple of floats.

The variables associated to a moving entity type must be defined via these
functions before the main game begins.

Variables are either “static” or not. If a variable is static, then there is
a single variable for the moving entity type which has a value. This value is
associated to the type, and not the instance. For example, if the troll moving
entity has the static integer variable “max health” which is set to 200, then all
trolls have their max health variables set to 200 (and these variables cannot
be changed). On the other hand, if the troll moving entity has the non-static
integer variable “health” which is initially set to 200, then all trolls initially
have their health variable set to 200, however this variable can change for each
troll.

Consider an instance of a troll moving entity. If its (non-static) health

CHAPTER 15. THE INITIALIZATION LUA-TO-C API 104

variable is changed, then it will remain changed for a certain amount of time,
called the revert length. After the revert length amount of time has passed,
the health variable will be reset to its default value.

15.2.1 ia ment new var XXX

void ia_ment_new_var_b(int tid, string var, bool default_value, float revert_length);

void ia_ment_new_var_i(int tid, string var, int default_value, float revert_length);

void ia_ment_new_var_f(int tid, string var, float default_value, float revert_length);

void ia_ment_new_var_v(int tid, string var, Vector default_value, float revert_length);

void ia_ment_new_var_s(int tid, string var, string default_value, float revert_length);

You can use these functions to create a new (non-static) variable associated
to a moving entity type.

For example, the following code in the MovingEnts/troll.lua will create the
variable “health” in the troll moving entity type.

function p.type_init(tid)

ia_ment_new_var_i(tid, "health", 200, 60.0 * 60.0)

end

The tid is an integer id for the moving entity type. Here the health variable is
set to have the default value of 200 (so new trolls that are created during game
play will initially have health 200). The revert time of the variable is one hour
(60*60 = 3600 seconds). Thus, if the player damages a troll (but does not kill
it), then the troll’s health will change and it will remain changed for one hour.
After one hour, the troll’s health will revert back to the default value of 200.

These functions can be called multiple times. For example, the following is
valid in the troll.lua file:

function p.type_init(tid)

ia_ment_new_var_i(tid, "health", 199, 60.0 * 60.0)

ia_ment_new_var_i(tid, "health", 200, 60.0 * 60.0)

end

The result of this will be that the moving entity has an integer variable called
“health” which is set to the initial value 200 for each troll.

15.2.2 ia ment new static var XXX

void ia_ment_new_static_var_b(int tid, string var, bool value);

void ia_ment_new_static_var_i(int tid, string var, int value);

void ia_ment_new_static_var_f(int tid, string var, float value);

void ia_ment_new_static_var_v(int tid, string var, Vector value);

void ia_ment_new_static_var_s(int tid, string var, string value);

These functions are used to create new static variables associated to moving
entities. Recall that static vars are associated to the moving entity type, not
individual moving entity instances.

CHAPTER 15. THE INITIALIZATION LUA-TO-C API 105

Consider the following type init function of a troll moving entity Lua script:

function p.type_init(tid)

ia_ment_new_static_var_i(tid, "max_health", 200)

ia_ment_new_var_i(tid, "health", 200, 60.0 * 60.0)

end

This causes moving entities of type troll to have both a max health and a health
variable (which are both integers). However although each troll has its own
health value, all the trolls share the same max health value (which is 200).

These new static var functions can be called multiple times, just like their
non-static versions.

15.2.3 ia ment set builtin var XXX

void ia_ment_set_builtin_var_b(int tid, string var, bool value);

void ia_ment_set_builtin_var_i(int tid, string var, int value);

void ia_ment_set_builtin_var_f(int tid, string var, float value);

The engine automatically creates certain variables for each moving entity.
The names of all of these start with a double underscore (so you should not
create your own variable starting with double underscores). See Section 12.5
for a list of all the built-in moving entity variables, and see Section 12.6 for an
explanation of what these variables do.

15.2.4 ia ment set var saving

void ia_ment_set_var_saving(int tid, string var, bool value);

When in the game a change is made to the world, this needs at some point
to be saved to a file. For example, if we damage a troll, that will modify its
health variable and so that needs to be changed. However certain variables are
not very important in the long term and so they do not need to be saved. For
every moving entity variable you can change whether or not it needs to be saved
when it is changed. Let’s say the trolls have a variable called last scream time
that we want to make so it is not saved to file.

Then the troll.lua file might contain the following:

function p.type_init(tid)

--The health variable (default valid = 200, revert length = one hour).

--When the health of a troll changes, this var will be flagged

--for saving (so during the next save it will be saved).

ia_ment_new_var_i(tid, "health", 200, 60.0 * 60.0)

--The last_scream_time variable.

--The next time the game is saved,

--this variable (for each moving entity) will NOT be saved.

ia_ment_new_var_f(tid, "last_scream_time", 0.0, 60.0)

CHAPTER 15. THE INITIALIZATION LUA-TO-C API 106

ia_ment_set_var_saving(tid, "last_scream_time", false)

end

Static variables are not saved to file.
Also, every moving entity type has a built-in (static) variable called disable saving.

When this is true, then NO variables for the moving entity type will be saved
to file. Indeed, when this is true, moving entities of that type are not saved in
any way to file.

15.3 Block (Type) Initialization Functions

These functions are intended to be called from the type init function of each
Block Lua Script. These functions all involve variables associated to a moving
entity.

There are five types of variables for moving entities: bools (b), ints (i),
floats(f), Vector(v), and strings (s). A vector is an (x,y,z) triple of floats.

The variables associated to a block type must be defined via these functions
before the main game begins.

Variables are either “static” or not. If a variable is static, then there is
a single variable for the moving entity type which has a value. This value is
associated to the type, and not the instance.

15.3.1 ia block new var XXX

void ia_block_new_var_b(int tid, string var, bool value)

void ia_block_new_var_i(int tid, string var, int value)

void ia_block_new_var_f(int tid, string var, float value)

void ia_block_new_var_v(int tid, string var, Vector value)

void ia_block_new_var_s(int tid, string var, string value)

Use the functions to set variables associated to a block type. The tid is the
type id, which is passed as an argument to each block script’s type init function.
For example, here is what the type init function in the file block soda machine.lua
might look like:

function p.type_init(tid)

--Initially the machine has 10 sodas.

ia_block_new_var_i(tid, "num_sodas", 10)

--A vector representing the location where sodas as spawned

--when the player uses the block.

ia_block_new_var_v(tid, "spawning_location", std.vec(1.0, 2.0, 3.0))

end

CHAPTER 15. THE INITIALIZATION LUA-TO-C API 107

15.3.2 ia block new static var XXX

void ia_block_new_static_var_b(int tid, string var, bool value)

void ia_block_new_static_var_i(int tid, string var, int value)

void ia_block_new_static_var_f(int tid, string var, float value)

void ia_block_new_static_var_v(int tid, string var, Vector value)

void ia_block_new_static_var_s(int tid, string var, string value)

You use these functions just like their non-static versions. Use such a func-
tion to create a variable associated to a block type where ALL blocks of that
type have the same value for this variable. For example, this is what the type
init function might look like for block wood.lua:

function p.type_init(tid)

--Creating a new static var called "description".

ia_block_new_static_var_s(tid, "description", "This is a wood block")

end

All wood blocks now have the immutable value “This is a wood block”
assigned to the static variable “description”.

15.4 Block Stacks

Before we say anything more about blocks, it is important to understand the
concept of a “block stack”. Fractal Block World does not just store a single
block at any given block location. Instead, it stores a “stack of blocks”.

The bottom block in the stack is the original block that was created by
procedural world generation. If the player then modifies that location by either
digging to create an empty block or by creating a solid block there, this actually
just pushes a block onto the stack. The original block from procedural world
generation is still stored in the block stack (at the bottom of the stack). Every
block that is added to the stack has a “revert time”. Once the game time reaches
this time, the block is popped from the stack.

For example, suppose the original block at a location is an air block, and
then the player creates a brick block at that location. Suppose the revert time
of the brick block is one hour in the future. Then in one hour, the brick block
will be removed and the original air block will occupy that location.

Every block on a block stack stores variables. All of these variable need
to have been registered with the block type with the ia block new var XXX or
ia block new static var XXX functions. Each one of these variables lasts the
entire lifetime the block (on a block stack) that stores it. However there is
one exception. The exception is that some block variables can be set to be
“ephemeral”.

If a variable is ephemeral and it is at the bottom of a block stack, then the
variable has a revert time. Once that game time is reached, the variable is
reverted back to the default value of the variable.

CHAPTER 15. THE INITIALIZATION LUA-TO-C API 108

Note also that the block at the bottom of a block stack has a revert time.
When this time is reached, all variables for the block are reverted. The idea is
that the revert time of a ephemeral variable should be less than the revert time
of the bottom block of a block stack.

15.4.1 Ephemeral block variables

void ia_block_make_var_eph(int tid, string var, int rl)

void ia_block_make_var_not_eph(int tid, string var)

Use these function in a type init function of a block script to make a variable
either ephemeral or not ephemeral. These functions must be called after the
variable is created. By default, every variable is NOT ephemeral. The number
rl is the “revert length”: when the variable is changed at time T, it will be
reverted at time T + rl. Here is an example:

function p.type_init(tid)

ia_block_new_var_i(tid, "cooldown", 10)

--One minute revert length.

ia_block_make_var_eph(tid, "cooldown", 60)

Chapter 16

The Game Lua-to-C API

In this chapter we will discuss the “Game Lua-to-C API”. The Game Lua API is
an API which certain Lua scripts are able to access. It provides “game” related
features, such as shrinking the player, etc. The API functions are implemented
in the C++ engine of the program. Here are the scripts that can use the API:

� Environment Rects (in EnvRects/)

� Basic Entites (in BasicEnts/)

� Game Lua Modules (in Game/)

� Moving Entities (in MovingEnts/)

� Windows (in Windows/)

Note: the Chunk Generation Scripts in WorldNodes/ cannot access the
Game Lua API. This is because the Chunk Generation Scripts are run in sepa-
rate threads. The “Game Lua modules” will be discussed in a later chapter.

16.1 The 6 Directions and 3 Axes

In the game there are 6 directions: front, back, left, right, up, down. When
creating the world there are also 6 directions: x pos, x neg, y pos, y neg, z pos,
z neg. Here are the integers associated to these:

x_pos -> 0

x_neg -> 1

y_pos -> 2

y_neg -> 3

z_pos -> 4

z_neg -> 5

Here is how to translate between these:

109

CHAPTER 16. THE GAME LUA-TO-C API 110

x_pos = right

x_neg = left

y_pos = front

y_neg = back

z_pos = up

z_neg = down

That is, the world uses a right-handed coordinate system.
You can convert between side integers and side strings using the functions

string std.side_int_to_str(int side_int)

int std.side_str_to_int(string side_str)

These are defined in the base package in the file “base/Game/std.lua”.
So if a function wants a block side as an integer and we pass it the integer

4, then this represents the positive z direction.
When the user faces one of the six directions, the HUD tells the user which

direction they are facing.
There are 3 axes: x,y, and z. When a function requires an “axis string”, one

of the following strings should be specified: “x”, “y”, “z”.

16.2 The Full Game Lua-to-C API

//---

// Program Level Functions

//---

void ga_command(string command);

void ga_save(bool play_sound);

void ga_load();

void ga_exit();

void ga_print(string line);

void ga_flush();

void ga_console_print(string line);

void ga_dump_lua_env();

//---

// Returning Values From a Function

//---

void ga_return_b(string var, bool value);

CHAPTER 16. THE GAME LUA-TO-C API 111

//---

// Time

//---

float ga_get_game_time();

float ga_get_level_time(int level);

//---

// Pseudo Random Functions

//---

void ga_srand(int seed);

int ga_rand();

float ga_randf();

float ga_randf_range(float min_f, float max_f);

int ga_randi(int min_i, int max_i);

//---

// Env Vars

//---

//Setting if var exists.

bool ga_exists(string var);

//Env var creating 1.

void ga_create_b(string var);

void ga_create_i(string var);

void ga_create_f(string var);

void ga_create_v(string var);

void ga_create_s(string var);

//Env var creating 2.

void ga_init_b(string var, bool value);

void ga_init_i(string var, int value);

void ga_init_f(string var, float value);

void ga_init_v(string var, Vector value);

void ga_init_s(string var, string value);

//Env var getting.

bool ga_get_b(string var);

int ga_get_i(string var);

float ga_get_f(string var);

Vector ga_get_v(string var);

string ga_get_s(string var);

//Env var setting.

void ga_set_b(string var, bool value);

CHAPTER 16. THE GAME LUA-TO-C API 112

void ga_set_i(string var, int value);

void ga_set_f(string var, float value);

void ga_set_v(string var, Vector value);

void ga_set_s(string var, string value);

//System var getting.

bool ga_get_sys_b(string var);

int ga_get_sys_i(string var);

float ga_get_sys_f(string var);

Vector ga_get_sys_v(string var);

string ga_get_sys_s(string var);

//System var setting.

void ga_set_sys_b(string var, bool value);

void ga_set_sys_i(string var, int value);

void ga_set_sys_f(string var, float value);

void ga_set_sys_v(string var, Vector value);

void ga_set_sys_s(string var, string value);

//---

// Sounds

//---

void ga_play_sound(string sound);

void ga_play_sound_menu(string sound);

void ga_play_music(string sound);

void ga_stop_music();

//---

// Game Stuff

//---

//System game stuff.

bool ga_genesis();

//Life and death (game stuff).

bool ga_kill_player();

//---

// System hud related

//---

void ga_hud_msg(string msg, float duration);

void ga_hud_reg_damage_from_dir(int damage, Vector dir);

void ga_hud_reg_dir_tex(string name, string tex, Vector dir);

CHAPTER 16. THE GAME LUA-TO-C API 113

//---

// Moving Through Chunk Tree

//---

void ga_shrink();

void ga_shrink2(Vector lp);

void ga_grow();

void ga_grow2(Vector lp);

void ga_tele(string path, Vector offset);

void ga_tele_pink();

void ga_tele_pink2(Vector lp);

void ga_tele_blue();

void ga_tele_blue2(Vector lp);

void ga_tele_same_level(Vector lp);

//---

// Windows (Part 1)

//---

//Window related.

void ga_window_push(string win_name);

void ga_window_pop();

void ga_window_pop_all();

void ga_main_menu_push(string win_name);

void ga_main_menu_pop();

void ga_main_menu_pop_all(bool return_to_game);

void ga_hud_window_add(string win_name, int priority);

void ga_hud_window_remove(string win_name);

//---

// Viewer queries

//---

//Viewer queries.

int ga_get_viewer_chunk_id();

int ga_get_viewer_level();

Vector ga_get_viewer_offset();

Vector ga_get_viewer_lp(int level);

BlockPos ga_get_viewer_bp(int level);

string ga_get_viewer_path();

string ga_get_viewer_path_ext();

Vector ga_get_vec_to_viewer(int level, Vector lp);

float ga_lbp_dist_to_viewer(int chunk_id, int lbp_hash);

float ga_block_dist_to_viewer(int level, BlockPos bp);

CHAPTER 16. THE GAME LUA-TO-C API 114

//Cached ment variables.

Vector ga_ment_get_var_special_vec_to_viewer(int inst_id);

float ga_ment_get_var_special_dist_to_viewer(int inst_id);

//---

// Basic entities

//---

string ga_bent_get_type(int level, BlockPos bp);

void ga_bent_add(int level, BlockPos bp, string type, float rl);

void ga_bent_add_i(int level, BlockPos bp, string type, int param, float rl);

void ga_bent_add_s(int level, BlockPos bp, string type, string param, float rl);

void ga_bent_set_param_i(int level, BlockPos bp, int value, float rl);

void ga_bent_set_param_s(int level, BlockPos bp, string value, float rl);

int ga_bent_get_param_i(int level, BlockPos bp);

string ga_bent_get_param_s(int level, BlockPos bp);

void ga_bent_remove_temp(int level, BlockPos bp, int num_sec);

void ga_bent_remove_perm(int level, BlockPos bp);

LIST ga_bent_sphere_query(int level, Vector lp, float radius);

//---

// Moving entities (type)

//---

bool ga_ment_var_exists(string type, string var);

bool ga_ment_get_static_b(string type, string var);

int ga_ment_get_static_i(string type, string var);

float ga_ment_get_static_f(string type, string var);

Vector ga_ment_get_static_v(string type, string var);

string ga_ment_get_static_s(string type, string var);

bool ga_ment_static_b_exists_and_true(string type, string var);

//---

// Moving entities (inst)

//---

void ga_ment_start(int level, Vector lp, string type);

void ga_ment_end();

void ga_ment_init_set_b(string key, bool value);

void ga_ment_init_set_i(string key, int value);

CHAPTER 16. THE GAME LUA-TO-C API 115

void ga_ment_init_set_f(string key, float value);

void ga_ment_init_set_v(string key, Vector value);

void ga_ment_init_set_s(string key, string value);

bool ga_ment_get_b(int inst_id, string var);

int ga_ment_get_i(int inst_id, string var);

float ga_ment_get_f(int inst_id, string var);

Vector ga_ment_get_v(int inst_id, string var);

string ga_ment_get_s(int inst_id, string var);

bool ga_ment_b_exists_and_true(int inst_id, string var);

void ga_ment_set_var_rt_only(int inst_id, string var, float rl);

void ga_ment_set_b(int inst_id, string var, bool value);

void ga_ment_set_i(int inst_id, string var, int value);

void ga_ment_set_f(int inst_id, string var, float value);

void ga_ment_set_v(int inst_id, string var, Vector value);

void ga_ment_set_s(int inst_id, string var, string value);

int ga_ment_inst_id_to_code_id(int inst_id);

int ga_ment_code_id_to_inst_id(int code_id);

bool ga_ment_exists(int inst_id);

void ga_ment_remove(int inst_id);

string ga_ment_get_type(int inst_id);

Vector ga_ment_get_lp(int inst_id);

Vector ga_ment_get_sllp(int inst_id);

void ga_ment_dump(int inst_id);

LIST ga_ment_sphere_query(

int level, int min_level, int max_level,

Vector lp, float radius);

void ga_ment_set_alarm(

int inst_id, float alarm_game_time, string alarm_name);

void ga_ment_set_alarm_on_level(

int inst_id, int level, float alarm_level_time, string alarm_name);

void ga_ment_all_dump();

//---

// Particles

//---

void ga_particle_add(CLASS args);

CHAPTER 16. THE GAME LUA-TO-C API 116

void ga_particle_explosion(CLASS args);

void ga_particle_trail(CLASS args);

void ga_particle_ring(CLASS args);

//---

// Blocks

//---

//LBPs.

int ga_lbp_seed_pos(int chunk_id, int lbp_hash);

//Blocks.

int ga_block_seed_pos(int level, BlockPos bp);

string ga_block_get(int level, BlockPos bp);

string ga_get_cocoon_block_of_chunk(int level, BlockPos vcp);

void ga_block_change_rl(

int level, BlockPos bp, string new_bt, float rl);

void ga_block_change_rl_default(

int level, BlockPos bp, string new_bt);

void ga_block_change_perm(

int level, BlockPos bp, string new_bt);

void ga_block_get_b(int level, BlockPos bp, string var, bool value);

void ga_block_get_i(int level, BlockPos bp, string var, int value);

void ga_block_get_f(int level, BlockPos bp, string var, float value);

void ga_block_get_v(int level, BlockPos bp, string var, Vector value);

void ga_block_get_s(int level, BlockPos bp, string var, string value);

bool ga_block_set_b(int level, BlockPos bp, string var);

int ga_block_set_b(int level, BlockPos bp, string var);

float ga_block_set_b(int level, BlockPos bp, string var);

Vector ga_block_set_b(int level, BlockPos bp, string var);

string ga_block_set_b(int level, BlockPos bp, string var);

//Block types.

bool ga_bt_get_physically_solid(string bt);

//---

// Respawn Point and Waypoints

//---

void ga_set_respawn_point(string path, BlockPos lbp);

void ga_add_waypoint_sloppy(string path, string name_override);

void ga_add_waypoint_sloppy_in_only(string path, string name_override);

CHAPTER 16. THE GAME LUA-TO-C API 117

//---

// Coordinates

//---

int ga_chunk_id_to_level(int chunk_id);

BlockPos ga_chunk_id_to_vcp(int chunk_id);

string ga_chunk_id_to_path(int chunk_id);

int ga_vcp_to_chunk_id(int level, BlockPos vcp);

int ga_path_to_chunk_id(string path);

float ga_level_scale_factor(int source_level, int target_level);

Vector ga_convert_lp(

int source_level, int target_level, Vector source_lp);

BlockPos ga_vcp_to_bp(int level, BlockPos vcp);

string ga_bp_to_path(int level, BlockPos bp);

//See base/Game/std.lua for

//lbp_to_bp, bp_to_vcp, bp_to_lbp, local_to_level_pos,

//level_to_local_pos, lp_to_vcp, lp_to_offset, bp, block_center,

//lbph_to_lbp, lbp_to_lbph, lp_to_bp, etc.

//---

// Math

//---

//Math.

//This is all in "base/Game/std.lua".

//---

// Movement and Physics

//---

void ga_move_set_desired_travel(Vector travel);

void ga_move_set_spin(float spin);

bool ga_move_get_on_sure_footing();

void ga_move_set_ledge_guards(bool on);

void ga_move_set_body_spirit();

bool ga_move_set_body_ground(

Vector trans, float radius, float bot_to_eye, float eye_to_top);

bool ga_move_set_body_fly(

Vector trans, float radius, bool use_true_up);

void ga_player_model_set_look();

void ga_player_model_q2md2_set_cmd(string cmd);

void ga_player_model_q2md2_set_state(string state);

CHAPTER 16. THE GAME LUA-TO-C API 118

//---

// Visibility

//---

bool ga_vis_test_level(int level, Vector lp_start, Vector lp_end);

//---

// Window (Part 2)

//---

//These are described in another chapter.

//These are in addition to the previous "windows" functions.

//---

// Deprecate Eventually

//---

void ga_add_emp_sphere(

int chunk_id, Vector offset, float radius,

float stun_length, int damage);

We will now describe all of these functions.

16.3 Game API: Program Level Functions

void ga_command(string command);

void ga_save(bool play_sound);

void ga_load();

void ga_exit();

void ga_print(string line);

void ga_flush();

void ga_console_print(string line);

void ga_dump_lua_env();

The engine has a console in which the user can enter commands. The func-
tion ga command causes the specified command to be executed. This should
not be used for typical game play functions.

The function ga save saves the game. You specify whether the “saving game
sound” is played.

The function ga load loads the game. That is, each player has exactly one
saved game slot. The load function will load that saved game.

The function ga exit exists the program (without saving).

CHAPTER 16. THE GAME LUA-TO-C API 119

Note that some of these functions work by making a request which is fulfilled
later.

The function ga print prints the given string to the stdout.txt file as a line.
No newline character is required. The ga print function works by writing to a
buffer. The function ga flush flushes this buffer. Note that exiting the program
via ga exit will flush the buffer also.

The user can open the console by pressing the tilde key. This console displays
a list of lines, including commands that the user entered into the console as well
as output from commands. The funtion ga console print adds the given string
to the console as a line (no newline character is required).

16.4 Game API: Returning Values From a Func-
tion

void ga_return_b(string var, bool value);

Normally when the C++ part of the program calls a Lua function, the Lua
function can return some value that the C++ part of the program can process.
However sometimes several values are needed to be returned.

The function ga return b serves to return an extra bool value. This function
specifies the name of the variable and its value. This should be called before
the actual return statement of the Lua function.

This can be used, for example, by the on ment hit function of a moving
entity script.

16.5 Game API: Time

float ga_get_game_time();

float ga_get_level_time(int level);

There are two types of time in the game: game time and level time. The
game time starts at 0.0 when the player starts a new game. The game time
records the number of seconds that have passed since the start of the game.
However there is an exception: there are places in the game where the player
can “sleep”. This will advance the game time. In this way the player can easily
sleep for an hour causing many entities to respawn.

The other kind of time is “level time”. Each level (level 0, level 1, etc) has
its own time system. On the level containing the player, the level time advances
at the normal rate. However levels that are coarser than the player have their
time advanced at a slower rate. For example, if the player is on level L, then
time on level L-1 advances at 1/16 the speed as normal. The time on level L-2
advances at (1/256) the speed as normal.

If the player is on level L but moves to level L-1, then level L is destroyed.
Then if the player shrinks from level L-1 back into level L, then the time of level
L will reset at “0.0”.

CHAPTER 16. THE GAME LUA-TO-C API 120

16.6 Game API: Pseudo Random Functions

void ga_srand(int seed);

int ga_rand();

float ga_randf();

float ga_randf_range(float min_f, float max_f);

int ga_randi(int min_i, int max_i);

Note:

FBW_RAND_MAX = 32767

The function ga srand sets the pseudo random number generator seed.
The function ga rand pseudo randomly generates an integer (using the pseudo

random seed) where the integer is between 0 and FBW RAND MAX-1 inclusive.
Each subsequent call to ga rand will generate a new number. The caller should
try to avoid using this function and should instead use ga randf, ga randf range
and ga randi.

The function ga randf pseudo randomly generates a floating point number
in the range [0.0, 1.0].

The function ga randf range generates a pseudo random float in the given
range. The function ga randi generates a pseudo random integer in the given
range (and the range is inclusive, so that largest integer that can be generated
is max i).

16.7 Game API: Env Vars

The engine has a “variable store” (an “environment”). This holds variables with
one of several types: bool, int, float, Vector, and string. A vector is a class with
three float members: x, y, and z. A package’s Lua scripts are only able to access
two types of environment variables: 1) “global variables”, and 2) a select few
other variables which we call “system variables”. The function ga get i gets the
value of a global environment variable whose type is an integer, and ga get sys i
gets the value of a system environment variable whose type is an integer. Global
variables must be declared in the file globals.txt in the package’s top directory.
You can read about this in Section 18.3.

bool ga_exists(string var);

Use this ga exists functions to determine if the given global variable exists.
Note that if there is an (integer) global variable called “num rockets”, then
the call to ga exists(“num rockets”) will return true. Note that the variable
num rockets actually corresponds to the environment variable with the full name

“game.globals.num rockets”.

If you open up the game’s console and type the command

“ls game.globals.num rockets”

CHAPTER 16. THE GAME LUA-TO-C API 121

it will tell you the value of the variable. However to get the value of this variable
from a Lua script, you would use the command

ga get i(“num rockets”)

as we will describe later.
We recommend prefixing all your global variables with a short string indi-

cating the name of your package. For example if your package is called “Tree-
Cutter”, then it would be better to have the global variable “tc.num rockets”
instead of just “num rockets”.

void ga_create_b(string var);

void ga_create_i(string var);

void ga_create_f(string var);

void ga_create_v(string var);

void ga_create_s(string var);

You can use these to create global variables. If the global variable already
exists, then nothing will happen. If the variable does NOT exist (in particular,
it is not listed in globals.txt), then it will be created (and initialized to a default
value) for use by the game. However it will not be saved when the game is
saved. Thus, these ga create XXX functions should be used for the creation of
temporary variables only.

void ga_init_b(string var, bool value);

void ga_init_i(string var, int value);

void ga_init_f(string var, float value);

void ga_init_v(string var, Vector value);

void ga_init_s(string var, string value);

These are very similar to the ga create XXX functions. Both the ga create XXX
and ga init XXX functions will do nothing if the (global) variable already exists.
However if the variable does NOT exist, then the ga init XXX function will set
the varaible to the given value (as opposed to the ga create XXX function which
sets it to a default value).

bool ga_get_b(string var);

int ga_get_i(string var);

float ga_get_f(string var);

Vector ga_get_v(string var);

string ga_get_s(string var);

Use these ga get XXX functions to get the value of a global environment
variable. If the variable does not exist, the program will exit. If the type of the
variable is wrong, then the program will exit.

void ga_set_b(string var, bool value);

void ga_set_i(string var, int value);

CHAPTER 16. THE GAME LUA-TO-C API 122

void ga_set_f(string var, float value);

void ga_set_v(string var, Vector value);

void ga_set_s(string var, string value);

Use these ga set XXX functions to set the value of a global environment
variable. If the variable does not exist, the program will exit. If the type of the
variable is wrong, then the program will exit.

bool ga_get_sys_b(string var);

int ga_get_sys_i(string var);

float ga_get_sys_f(string var);

Vector ga_get_sys_v(string var);

string ga_get_sys_s(string var);

void ga_set_sys_b(string var, bool value);

void ga_set_sys_i(string var, int value);

void ga_set_sys_f(string var, float value);

void ga_set_sys_v(string var, Vector value);

void ga_set_sys_s(string var, string value);

Use these functions ga get sys XXX and ga set sys XXX functions for get-
ting and setting “system” environment variables.

Here are the system variables that can be accessed:

//Bool system vars:

game.player.alive

game.constant_saving

game.player.move.fly.use_true_up (READ ONLY)

menu.in_main

metagame.cheat.god (READ ONLY)

metagame.cheat.enabled (READ ONLY)

//Int system vars:

game.input.mouse.wheel_value (READ ONLY)

game.package.seed (READ ONLY)

game.player.health_max

stats.in_dps

stats.last_in_dps

//Float system vars:

game.time.total

game.time.play (READ ONLY)

game.time.elapsed (READ ONLY)

game.player.move.fly.radius (READ ONLY)

game.player.move.ground.radius (READ ONLY)

game.player.move.ground.bot_to_eye (READ ONLY)

game.player.move.ground.eye_to_top (READ ONLY)

CHAPTER 16. THE GAME LUA-TO-C API 123

time.current (READ ONLY)

time.elapsed (READ ONLY)

//Vector system vars:

game.player.camera.look (READ ONLY)

game.player.camera.up (READ ONLY)

game.player.camera.left (READ ONLY)

game.player.move.last_pos_diff (READ ONLY)

game.player.camera.offset (READ ONLY)

menu.text_color (READ ONLY)

//String system vars:

game.player.name (READ ONLY)

game.package.config_desc (READ ONLY)

game.player.move.mode (READ ONLY)

16.8 Game API: Sounds

void ga_play_sound(string sound);

void ga_play_sound_menu(string sound);

void ga_play_music(string sound);

void ga_stop_music();

There are tree types of sounds for the program: 1) game sounds, 2) menu
sounds, and 3) music. Game sounds are paused when the player opens a menu
(including the main menu). Menu sounds are not paused (menu sounds are
designed to be used while inside a menu). Music is similar to menu sounds in
that it is also played while the user is in a menu. The difference is that only
one music sound can be playing. Music sounds can be several minutes long, but
game and menu sounds should be relatively short.

Once a game or menu sound is played it cannot be stopped. Music, on the
other hand, can be stopped at any time.

The sound name string that is specified should be listed in

“Sounds/sound names.txt”.

16.9 Game API: Game Stuff

16.9.1 ga genesis

bool ga_genesis();

This determines if the game is in “genesis mode”. This only affects the Xar
package (so you can ignore this). This was here to make a version of the program
where there were no monsters or weapons.

CHAPTER 16. THE GAME LUA-TO-C API 124

16.9.2 ga kill player

bool ga_kill_player();

The function ga kill player first checks if metagame.cheat.god is true. If so,
the function returns false and nothing else happens.

Next, the function ga kill player checks if the variable game.player.alive is
true. If it is false, the function returns false and nothing else happens. If it is
true, then it sets it to false and calls the function top.killed player (in the script
Game/top.lua).

For completeness, let us explain more of the life/death process. We already
mentioned that calling the C-API function ga kill player will set an internal
variable and will in turn call the Lua function top.killed player. So how does the
player respawn? The player respawns by calling the system command “respawn
force” or “respawn passive”. For example, there can be a death window that
gets pushed onto the game window stack. When the correct button is pushed,
the window can execute the command

ga command(“respawn passive”)

When the engine respawns the player and is finished, the engine calls the func-
tion top.respawn player().

16.10 Game API: System HUD Related

void ga_hud_msg(string msg, float duration);

This puts a message close to the center of the screen. It is displayed for
duration many seconds, unless another message is displayed in place of it.

void ga_hud_reg_damage_from_dir(int damage, Vector dir);

This puts a pink (or whatever color) solid circle near the center of the screen
which indications that an attack was made to the player from a certain direction.
The larger the circle, the more damage was dealt to the player. The dir points
from the player to where the damage comes from.

void ga_hud_reg_dir_tex(string name, string tex, Vector dir);

This puts a textured square near the center of the screen in the same area
that attacks to the player are displayed. The exact location of the square indi-
cates “what direction the picture refers to”.

16.11 Game API: Moving Through Chunk Tree

void ga_shrink();

void ga_shrink2(Vector lp);

CHAPTER 16. THE GAME LUA-TO-C API 125

void ga_grow();

void ga_grow2(Vector lp);

void ga_tele(string path, Vector offset);

void ga_tele_pink();

void ga_tele_pink2(Vector lp);

void ga_tele_blue();

void ga_tele_blue2(Vector lp);

void ga_tele_same_level(Vector lp);

The function ga shrink will shrink the player one level (at their current
location). The function ga shrink2 first teleports the player to the specified
position (“level position” lp) on the same level, then the player will shrink from
that location. If the player cannot teleport there, they will just shrink at their
current location.

The functions ga grow and ga grow2 are just like ga shrink and ga shrink2,
except with growing one level instead of shrinking one level.

The function ga tele will teleport the player to the given chunk with the
specified offset within that chunk. This can be done even if the target chunk is
not in the active chunk tree.

The function ga tele pink is just like ga shrink or ga grow. It will teleport
the user towards the root of the chunk tree as if they touched a Pink Ring
Device. The function ga tele pink2 is similar except it first teleports the player
to a location in the same level first before simulating touching a Pink Ring
Device. If the first teleportation cannot happen, then that is fine and the player
will simulate touching a Pink Ring Device from their current location.

The function ga tele blue and ga tele blue2 are like ga tele pink and ga tele pink2,
except for Blue Rings instead of Pink Rings.

The function ga tele same level will teleport the player to the specified lo-
cation within the same level. If the target chunk is not in the active chunk tree,
the teleportation will not happen.

16.12 Game API: Windows (Part 1)

void ga_window_push(string win_name);

void ga_window_pop();

void ga_window_pop_all();

void ga_main_menu_push(string win_name);

void ga_main_menu_pop();

void ga_main_menu_pop_all(bool return_to_game);

void ga_hud_window_add(string win_name, int priority);

void ga_hud_window_remove(string win_name);

There are three types of windows: game windows, main menu windows, and
hud windows. A window cannot be in more than one category. The game
windows are put into a stack, as are the main menu windows. However the
HUD windows are put into a set.

CHAPTER 16. THE GAME LUA-TO-C API 126

The functions ga window push and ga window pop push windows on and off
of the game window stack. Only the top window is rendered and only the top
window gets user input. The function ga window pop all pops ALL windows
off of the game window stack.

The functions ga main menu push, ga main menu pop, and ga main menu pop all
are similar to their game windows counterparts, except for the main menu stack.

The functions ga hud window add and ga hud window remove will add and
remove windows from the HUD window set. These windows should be mostly
transparent, so the order in which these windows are rendered is important.
Windows are rendered with the highest priority first.

16.13 Game API: Viewer Queries

int ga_get_viewer_chunk_id();

int ga_get_viewer_level();

Vector ga_get_viewer_offset();

Vector ga_get_viewer_lp(int level);

BlockPos ga_get_viewer_bp(int level);

string ga_get_viewer_path();

string ga_get_viewer_path_ext();

Vector ga_get_vec_to_viewer(int level, Vector lp);

float ga_lbp_dist_to_viewer(int chunk_id, int lbp_hash);

float ga_block_dist_to_viewer(int level, BlockPos bp);

//Cached ment variables.

Vector ga_ment_get_var_special_vec_to_viewer(int inst_id);

float ga_ment_get_var_special_dist_to_viewer(int inst_id);

The center of the world is the eyeball of the player (which we call the viewer).
ga get viewer chunk id gets the chunk id of the viewer. ga get viewer level

gets the level that the viewer is on (the level of the viewer chunk). Note that
the viewer chunk is the finest chunk which contains the viewer’s position.

ga get viewer offset gets the offset of the viewer relative to the chunk that
contains the viewer. So the viewer offset should be a vector between (0.0, 0.0,
0.0) and (16.0, 16.0, 16.0).

ga get viewer lp gets the “level position” of the viewer. This is the posi-
tion of the viewer on the specified level. Note that on the viewer level, the
ga get viewer lp should return the same as ga get viewer offset.

ga get viewer bp gets the position of the block (on the specified level) which
contains the viewer.

ga get viewer path gets the path of the chunk which contains the player.
ga get viewer path ext gets the path of the block which contains the player (so
that path is one longer than that of ga get viewer path). Note that functions
like this that get paths might be slow if the paths are really long.

ga get vec to viewer returns the difference between the viewer’s level posi-
tion and the specified vector. The result will point from the specified vector

CHAPTER 16. THE GAME LUA-TO-C API 127

to the viewer. ga lbp dist to viewer returns the distance from the center of the
given block to the viewer (on the level of the block). ga block dist to viewer
does the same.

ga ment get var special vec to viewer returns the vector from the specified
moving entity to the viewer (on the level of the moving entity). ga ment get var special dist to viewer
returns the distance from the specified moving entity to the viewer (on the level
of the moving entity).

16.14 Game API: Basic Entities

string ga_bent_get_type(int level, BlockPos bp);

This ga bent get type function returns the type of the basic entity at the
given location. If there is no basic entity there, it will return the empty string.

void ga_bent_add(int level, BlockPos bp, string type, float rl);

void ga_bent_add_i(int level, BlockPos bp, string type, int param, float rl);

void ga_bent_add_s(int level, BlockPos bp, string type, string param, float rl);

Basic entities (BEnts) have a string parameter and an integer parameter.
These three functions will create a new basic entity at the specified level and
block position with the specified revert length (rl). The function ga bent add i
creates a basic entity with a specified integer parameter. The function ga bent add s
similarly creates a basic entity with a specified string parameter. To set both
the integer and string parameters, use the ga bet set param XXX functions.

void ga_bent_set_param_i(int level, BlockPos bp, int value, float rl);

void ga_bent_set_param_s(int level, BlockPos bp, string value, float rl);

These two functions will set the integer and string parameters of the basic
entity at the given block position.

int ga_bent_get_param_i(int level, BlockPos bp);

string ga_bent_get_param_s(int level, BlockPos bp);

These two functions will get the integer and string parameters of the basic
entity at the given block position.

void ga_bent_remove_temp(int level, BlockPos bp, int num_sec);

void ga_bent_remove_perm(int level, BlockPos bp);

The ga bent remove temp will remove the basic entity for a given number of
seconds. Note that this will remove ANY basic entity from that location. The
function ga bent remove perm will permanently remove the basic entity (and
any basic entity) from the given location.

LIST ga_bent_sphere_query(int level, Vector lp, float radius);

CHAPTER 16. THE GAME LUA-TO-C API 128

The ga bent sphere query returns a list of all the basic entities that are
within radius distance of lp on the given level. Here is an example:

local level = 5

local lp = std.vec(18.2, 19.7, 20.6)

local radius = 17.4

local list = ga_bent_sphere_query(

level, lp, radius)

for k,v in pairs(list) do

local dist = v.dist --Distance of bp center to lp.

local bp = v.bp --Block position of bent.

--Do something with dist and bp!

end

The list is ordered by dist (closer bents come first).

16.15 Game API: Moving Entities (type)

bool ga_ment_var_exists(string type, string var);

The function ga ment var exists returns whether or not a moving entity
(type) has a given variable.

bool ga_ment_get_static_b(string type, string var);

int ga_ment_get_static_i(string type, string var);

float ga_ment_get_static_f(string type, string var);

Vector ga_ment_get_static_v(string type, string var);

string ga_ment_get_static_s(string type, string var);

These functions get the values of static variables for moving entities. Note:
if a variable is NOT static, then calling one of these functions will get the default
value of that variable. Note that the only way to change a static variable (or
the default value of a non-static variable) is during the package initialization
phase. See the Lua-to-C Initialization API.

bool ga_ment_static_b_exists_and_true(string type, string var);

The function ga ment static b exists and true is a helper function. It returns
whether or not the given moving entity variable exists AND is true.

16.16 Game API: Moving Entities (inst)

16.16.1 Creating a moving entity

void ga_ment_start(int level, Vector lp, string type);

void ga_ment_end();

CHAPTER 16. THE GAME LUA-TO-C API 129

void ga_ment_init_set_b(string key, bool value);

void ga_ment_init_set_i(string key, int value);

void ga_ment_init_set_f(string key, float value);

void ga_ment_init_set_v(string key, Vector value);

void ga_ment_init_set_s(string key, string value);

To create a moving entity, you call ga ment start and then ga ment end. In
between you call functions ga ment init set XXX to set variables of the moving
entity. The ga ment start requires the level of the moving entity as well as the
level position and the type name of the moving entity.

16.16.2 Getting moving entity variables

bool ga_ment_get_b(int inst_id, string var);

int ga_ment_get_i(int inst_id, string var);

float ga_ment_get_f(int inst_id, string var);

Vector ga_ment_get_v(int inst_id, string var);

string ga_ment_get_s(int inst_id, string var);

Use these ga ment get XXX functions to get the variables of a moving entity.

16.16.3 Testing is a variable exists and is true

bool ga_ment_b_exists_and_true(int inst_id, string var);

The ga ment b exists and true is a helper function which returns true iff the
moving entity has the bool variable AND the variable is true.

16.16.4 Changing the revert length of a variable

void ga_ment_set_var_rt_only(int inst_id, string var, float rl);

Use the ga ment set var rt only function for changing the revert time of a
variable for (this instance of) a moving entity. This does NOT change the value
of the variable.

16.16.5 Setting moving entity variables

void ga_ment_set_b(int inst_id, string var, bool value);

void ga_ment_set_i(int inst_id, string var, int value);

void ga_ment_set_f(int inst_id, string var, float value);

void ga_ment_set_v(int inst_id, string var, Vector value);

void ga_ment_set_s(int inst_id, string var, string value);

Use these ga ment get XXX functions to set the variables of a moving entity.
The revert time is already specified (it is associated to the variable).

CHAPTER 16. THE GAME LUA-TO-C API 130

16.16.6 Inst ID and code ID

int ga_ment_inst_id_to_code_id(int inst_id);

int ga_ment_code_id_to_inst_id(int code_id);

Every moving entity has an instance ID and a code ID. The instance ID is
only valid until the player either exists the program or loads a game. The code
ID, on the other hand, is persistant. Use these functions to convert to and from
these two types of IDs.

If the code id cannot be found by ga ment code id to inst id, it returns -1.
If the inst id cannot be found by ga ment inst id to code id, it returns -1.

A code ID ≥ 0 indicates that the moving entity is “roaming”. A code ID
< −1 indicates that the moving entity is not “roaming” (and was therefore
originally created by procedural world generation).

16.16.7 Testing if a moving entity exists

bool ga_ment_exists(int inst_id);

The ga ment exists returns whether or not the given (instance of a) moving
entity exists.

16.16.8 Removing a moving entity

void ga_ment_remove(int inst_id);

The ga ment remove function will remove the given moving entity (instance).
If it is a roaming entity, it will be gone for good. If it is a non-roaming entity
(it is generated from procedural world generation), then it will respawn after
respawn length number of seconds.

16.16.9 Getting the type string of a moving entity

string ga_ment_get_type(int inst_id);

The function ga ment get type gets the moving entity type of the moving
entity instance.

16.16.10 Getting the level position

Vector ga_ment_get_lp(int inst_id);

The function ga ment get lp gets the position of the moving entity on its
level (its “level position”). Note: to get the level of the moving entity, call
ga ment get i(inst id, “ level”).

CHAPTER 16. THE GAME LUA-TO-C API 131

16.16.11 Getting the starting level level position

Vector ga_ment_get_sllp(int inst_id);

The starting level of a moving entity is the level of the first chunk that the
entity spawned into. It is very common to convert the level position (lp) of a
moving entity to the starting level. We call this the starting level level position
(sllp) of the moving entity. The function ga ment get sllp returns just that.

16.16.12 Dumping a moving entity

void ga_ment_dump(int inst_id);

The function ga ment dump prints to stdout.txt relevant information about
the given moving entity.

16.16.13 Sphere query

LIST ga_ment_sphere_query(

int level, int min_level, int max_level,

Vector lp, float radius);

The ga ment sphere query returns a list of all the moving entities that are
within radius distance of lp on level level. Also we consider moving entities that
are on the levels between min level and max level inclusive. Here is an example:

local level = 5

local min_level = 4

local max_level = 6

local lp = std.vec(18.0, 19.0, 20.0)

local radius = 17.4

local list = ga_ment_sphere_query(

level, min_level, max_level,

lp, radius)

for k,v in pairs(list) do

local ment_inst_id = v.inst_id

local dist_to_ment = v.dist

--Do something with ment_inst_id and dist_to_ment!

end

The list is ordered by dist (closer ments come first).

16.16.14 Alarms

void ga_ment_set_alarm(

int inst_id, float alarm_game_time, string alarm_name);

void ga_ment_set_alarm_on_level(

int inst_id, int level, float alarm_level_time, string alarm_name);

CHAPTER 16. THE GAME LUA-TO-C API 132

An alarm is maintained by the engine (but is NOT saved when the game
is saved). A moving entity can set an alarm. The alarm is associated to the
moving entity instance (the inst id) and the alarm also has a name. When the
time comes, the alarm goes off and the moving entity is called back (the function
on alarm of the moving entity is called). There are two types of alarms: normal
(game) and level. A normal (game) type alarm goes off at the given game time.
A level type alarm goes off when the specified level time occurs.

16.16.15 Dumping all moving entities

void ga_ment_all_dump();

This will dump information about ALL moving entities that exist in the
active chunk tree.

16.17 Game API: Particles

A particle is a point like entity used for rendering only. They are not saved
when the game is saved.

16.17.1 Adding a single particle

void ga_particle_add(CLASS args);

This function ga particle add adds a single particle. There are many param-
eters which are passed as a single class to the function. The following example
illustrates this:

local args = {}

args.level = start_level

args.pos = std.vec(4.0, 5.0, 6.0)

args.ttl = 1.0

args.size = 0.2

args.color = std.vec(1.0, 1.0, 1.0)

args.fade_time = 0.5

args.vel = std.vec(0.0, 0.0, 10.0)

args.tex = "particle_2"

args.use_min_dist = false

ga_particle_add(args)

The use min dist determines whether or not particles will be removed if they
are too close to the viewer. If use min dist is true, then this will be the case.

CHAPTER 16. THE GAME LUA-TO-C API 133

16.17.2 Adding a spherical explosion of particles

void ga_particle_explosion(CLASS args);

This adds a spherical explosion of particles. See the following example:

local args = {}

args.level = 10

args.pos = std.vec(6.0, 7.0, 8.0)

args.ttl_min = 10.0

args.ttl_max = 20.0

args.size_min = 0.2

args.size_max = 1.0

args.color = col

args.fade_time_min = 10.0

args.fade_time_max = 10.0

args.speed_min = 0.5

args.speed_max = 0.5

args.tex = "particle_2"

args.radius_min = 4.0

args.radius_max = 4.0

args.num = 200

args.use_min_dist = false

ga_particle_explosion(args)

Radius XXX is the distance of each particle from the center.

16.17.3 Adding a line of particles

void ga_particle_trail(CLASS args);

This adds a line of particles. See the following example:

local args = {}

args.level = 10

args.pos_start = std.vec(2.0, 2.0, 2.0)

args.pos_end = std.vec(12.0, 13.0, 14.0)

args.ttl_min = 0.5

args.ttl_max = 0.5

args.size_min = 0.1

args.size_max = 0.1

args.color = std.vec(1.0, 1.0, 1.0)

args.fade_time_min = 0.5

args.fade_time_max = 0.5

args.speed_min = 0.0

args.speed_max = 0.0

args.tex = "particle_2"

CHAPTER 16. THE GAME LUA-TO-C API 134

args.radius_min = 0.0

args.radius_max = 0.0

args.avg_len = 1.0

args.use_min_dist = false

ga_particle_trail(args)

The parameters radius XXX specify the distance of the particle from the
line between pos start and pos end.

16.17.4 Adding a ring of particles

void ga_particle_ring(CLASS args);

This adds a ring of particles. See the following example:

local args = {}

args.level = 10

args.pos = std.vec(6.0, 7.0, 8.0)

args.normal = std.vec(0.0, 0.0, 1.0)

args.ttl_min = 1.0

args.ttl_max = 2.0

args.size_min = 0.4

args.size_max = 0.6

args.color = std.vec(0.0, 0.0, 1.0)

args.fade_time_min = 1.0

args.fade_time_max = 1.0

args.tex = "particle_2"

args.radius = 1.0

args.speed = 4.0

args.num = 100

args.use_min_dist = false

ga_particle_ring(args)

The parameter radius is the distance of the particles from the center position.
The particles move away from the center position with the given speed.

16.18 Game API: Blocks

16.18.1 Local block position functions

int ga_lbp_seed_pos(int chunk_id, int lbp_hash);

This function gets a seed (for pseudo random number generation) that is
determined by the given block position. The block is given by the chunk (the
chunk id) and the local block position hash code of the position within the
chunk.

CHAPTER 16. THE GAME LUA-TO-C API 135

16.18.2 Miscellaneous block functions

int ga_block_seed_pos(int level, BlockPos bp);

string ga_block_get(int level, BlockPos bp);

string ga_get_cocoon_block_of_chunk(int level, BlockPos vcp);

The function ga block seed pos is like ga lbp seed pos, except it takes the
level and the block position to determine the seed.

The function ga block get returns the block type (string) of the block with
the given position.

The function ga get cocoon block of chunk returns the block type of the
block which occupies the same volume as the given chunk. The chunk is specified
by its level and vcp (viewer centric position).

16.18.3 Changing a block

void ga_block_change_rl(

int level, BlockPos bp, string new_bt, float rl);

void ga_block_change_rl_default(

int level, BlockPos bp, string new_bt);

void ga_block_change_perm(

int level, BlockPos bp, string new_bt);

The function ga block change rl changes the type of a block. A “revert
length” is specified (in seconds). After this amount of time, the block is reverted
to its previous state.

The function ga block change rl default changes the type of a block but
the revert length is specified by the static variable “ revert length default”
associated to the block type.

The function ga block change perm permanently changes the type of a block.
Specifically, this is the same as calling ga block change rl but with a fixed very
large revert length.

Note that in Fractal Block World we actually store a “stack of blocks” at
each block position, not a single block. This concept is explained more in
Section 15.4. So calling one of these “block change” functions will push a block
onto a block stack.

16.18.4 Block variables

void ga_block_get_b(int level, BlockPos bp, string var, bool value);

void ga_block_get_i(int level, BlockPos bp, string var, int value);

void ga_block_get_f(int level, BlockPos bp, string var, float value);

void ga_block_get_v(int level, BlockPos bp, string var, Vector value);

void ga_block_get_s(int level, BlockPos bp, string var, string value);

bool ga_block_set_b(int level, BlockPos bp, string var);

int ga_block_set_b(int level, BlockPos bp, string var);

CHAPTER 16. THE GAME LUA-TO-C API 136

float ga_block_set_b(int level, BlockPos bp, string var);

Vector ga_block_set_b(int level, BlockPos bp, string var);

string ga_block_set_b(int level, BlockPos bp, string var);

Use these functions to get and set block variables. The concept of the “revert
time” of a block variable is discussed in Section 15.4.

Here is a complete example of a soda machine block which the player can
use.

function p.get_is_solid() return true end

function p.get_tex() return "block_diamond" end

function p.main()

set_default_block("s")

end

function p.type_init(id)

ia_block_new_var_i(id, "num_sodas", 10)

end

function p.get_can_use(level, bp)

return true

end

function p.get_use_msg(level, bp)

local num_sodas = ga_block_get_i(level, bp, "num_soads")

return "Sodas left: " .. tostring(num_sodas)

end

--Drinking a soda gives the player 5 health.

function p.on_use(level, bp)

local num_sodas = ga_block_get_i(level, bp, "num_sodas")

if(num_sodas <= 0) then return end

local player_health = ga_get_i("var.health")

player_health = player_health + 5

ga_set_i("var.health", player_health)

num_sodas = num_sodas - 1

ga_block_set_i(level, bp, "num_sodas", num_sodas)

end

16.18.5 Block types

bool ga_bt_get_physically_solid(string bt);

The function ga bt get physically solid returns whether or not the block (of
the given type) is physically solid.

CHAPTER 16. THE GAME LUA-TO-C API 137

16.19 Game API: Respawn Point andWaypoints

16.19.1 Respawn point

void ga_set_respawn_point(string path, BlockPos lbp);

This function sets the game’s current respawn point. When the player dies,
he will respawn there. Note that to respawn, the player should enter the fol-
lowing system command “respawn passive”. The lbp should be a local block
position, specifying a block between (0,0,0) and (15,15,15) inclusive.

16.19.2 Waypoints

void ga_add_waypoint_sloppy(string path, string name_override);

void ga_add_waypoint_sloppy_in_only(string path, string name_override);

These functions are called “sloppy” because we do not specify the position
of the waypoint within the chunk. The function ga add waypoint sloppy adds
the given chunk to the list of available waypoints. Note that the chunk must
actually contain a waypoint for this to work.

The function ga add waypoint sloppy in only is similar but it applies to in-
only waypoints. The reason why there are two of these functions is because a
chunk could contain a normal waypoint and an in-only waypoint.

16.20 Game API: Coordinates

16.20.1 From chunk id

int ga_chunk_id_to_level(int chunk_id);

BlockPos ga_chunk_id_to_vcp(int chunk_id);

string ga_chunk_id_to_path(int chunk_id);

The function ga chunk id to level returns the level of the given chunk. The
function ga chunk id to vcp returns the vcp (in the chunk’s level) of the given
chunk. The function ga chunk id to path returns the chunk path of the given
chunk.

16.20.2 To chunk id

int ga_vcp_to_chunk_id(int level, BlockPos vcp);

int ga_path_to_chunk_id(string path);

The function ga vcp to chunk id returns the chunk id of a chunk given its
level and viewer centric position.

The function ga path to chunk id returns the chunk id of a chunk given its
chunk path.

CHAPTER 16. THE GAME LUA-TO-C API 138

16.20.3 Converting from one level to another

float ga_level_scale_factor(int source_level, int target_level);

Vector ga_convert_lp(

int source_level, int target_level, Vector source_lp);

Every point in space is on every level. The function ga convert lp converts
the coordinates of a point (seen on level source level) to a point on level tar-
get level.

The function ga level scale factor returns how much scaling there is from
level source level to level target level. For example, ga level scale factor(10, 11)
= 16. Also, ga level scale factor(10, 8) = 1/256.

16.20.4 The block position of a chunk

BlockPos ga_vcp_to_bp(int level, BlockPos vcp);

Every chunk itself is a block. Suppose C is a chunk on level L. Suppose C
has viewer centric position vcp (on level L). Now C is also a block on level L−1.
To get the block position of C in level L−1, make the call ga vcp to bp(L, vcp).

string ga_bp_to_path(int level, BlockPos bp);

The function ga bp to path returns the path of the chunk that occupies the
specified block’s position. The chunk containing bp needs to be in the active
chunk tree, but the chunk occupying the same space as the block need not be
in the active chunk tree.

16.20.5 base/Game/std.lua

Many coordinate functions are provided in the Lua in the file base/Game/std.lua.
Here are some such functions:

vec,

bp,

lbp_to_bp

bp_to_vcp

bp_to_lbp

local_to_level_pos,

level_to_local_pos

lp_to_vcp

lp_to_offset,

block_center,

lbph_to_lbp,

lbp_to_lbph,

lp_to_bp,

side_int_to_str,

CHAPTER 16. THE GAME LUA-TO-C API 139

side_str_to_int,

side_int_to_vec,

get_adj_bp

16.21 Game API: Math

There are no math functions in the Game Lua-to-C API. However take a look
at base/Game/std.lua for some math related functions.

16.22 Game API: Movement and Physics

16.22.1 Moving

void ga_move_set_desired_travel(Vector travel);

void ga_move_set_spin(float spin);

The way the player moves though the world is by specifying a move (travel)
vector. The engine then tries to move the player along that vector as much as
possible, doing collision detection in the process. The function ga move set desired travel
specifies this travel vector. So, this should be called each discrete update.

The function ga move set spin is only used in 6 degrees of freedom games.
This is used to specify how much to rotate the viewer around the viewer’s look
vector. Again, this should be called each discrete update.

16.22.2 Gravity

bool ga_move_get_on_sure_footing();

void ga_move_set_ledge_guards(bool on);

In games with gravity, we except that there will be more friction when the
player is just above a block surface (and there will be more movement accel-
eration). The function ga move get on sure footing returns true if the player
is just above a block surface so that he should be considered “on the ground”.
Note: when jumping up a staircase, the player will be able to “catch each ledge”
and move quickly forward.

16.22.3 Setting the body type

void ga_move_set_body_spirit();

bool ga_move_set_body_ground(

Vector trans, float radius, float bot_to_eye, float eye_to_top)

bool ga_move_set_body_fly(

Vector trans, float radius, bool use_true_up);

CHAPTER 16. THE GAME LUA-TO-C API 140

There are several player body types: spirit, ground, and fly. Use these
functions to set the body type. These functions may fail (due to geometry in
the world), in which case the player’s body will remain the same.

When the player has the “spirit” body type, he is in a chunk but does not
truly interact with anything in the world. This body type is used for traversing
the chunk tree to find a suitable location. For example, this can be used to
create the initial starting position of the player.

The body type “ground” is intended for games with gravity. In this body
type, the player is modeled as a cylinder. The eye of the player is exactly
bot to eye many units from the bottom of the cylinder, and the eye of the
player is exactly eye to top many units to the top of the cylinder. When the
ga move set body ground is first called, the eyes of the player are first translated
by the vector trans.

The body type “fly” is intended for space games. In this body type, the
player is modeled as a sphere. Again, the eyes of the player are first translated
by trans before the new body dimensions take place. The argument use true up
argument specifies whether the top middle of the player’s screen points in the
positive Z direction. If this is set to false, the player can easily become upside
down.

16.22.4 The character model

void ga_player_model_set_look();

void ga_player_model_q2md2_set_cmd(string cmd);

void ga_player_model_q2md2_set_state(string state);

These functions modify the player model of the player. The player model is
a Quake 2 character model. The function ga player model set look causes the
player model to face in the direction that the player is facing.

The functions ga player model q2md2 set cmd and ga player model q2md2 set state
set the command and state respectively of the player model. The state can be
one of “”, “run”, “crouch” and “crouch run”. The cmd can be one of “”,
“stand”, “run”, “attack”, “pain”, “jump up”, “jump down”, “flip”, “salute”,
“taunt”, “wave”, “point”, “crstand”, “crwalk”, “crattack”, “crattack”, “cr-
pain”, “crdeath1”, “death1”, “death2”, “death3”.

The player can be doing at most one command at a time. When they
are finished their command, they will perform their “state” action, which will
continue on a loop.

16.23 Visibility

bool ga_vis_test_level(int level, Vector lp_start, Vector lp_end);

The function returns true iff the line segment from lp start to lp end does
not intersect any solid blocks on the given level.

CHAPTER 16. THE GAME LUA-TO-C API 141

16.24 Game API: Windows (Part 2)

These functions are described in Chapter 17.

16.25 Game API: Deprecate Eventually

These functions will probably be removed from the engine at some point.

void ga_add_emp_sphere(

int chunk_id, Vector offset, float radius,

float stun_length, int damage);

The function ga add emp sphere adds an EMP blast sphere to the world.
Note: these are not saved when the game is saved.Note: once there is an EMP
blast, for every affected moving entity the function xar ment emp.emp stun will
be called.

Chapter 17

The Game Lua-to-C API:
Windows

In Chapter 16 we talked about most of the Game Lua-to-C API. In this chapter
we will discuss more of this API. Specifically, we will discuss functions that are
intended to be called from Window Lua Scripts.

17.1 The API

void ga_win_set_back_params(

int wid, Vector color, float alpha1, float alpha2);

void ga_win_set_front_color(int wid, Vector color);

void ga_win_set_front_color_default(int wid);

void ga_win_set_char_size(int wid, float char_width, float char_height);

void ga_win_set_background(int wid, Vector color, float alpha);

void ga_win_set_background_default(int wid);

void ga_win_quad(

int wid, float min_x, float min_y, float max_x, float max_y, string tex);

void ga_win_quad_two(

int wid, flaot min_x, float min_y, float max_x, float max_y,

string tex1 string tex2, float frac);

void ga_win_quad_color(

int wid, float min_x, float min_y, float max_x, float max_y, Vector color);

void ga_win_txt(

int wid, float min_x, float min_y, string txt);

void ga_win_txt_alpha_bg(

int wid, float min_x, float max_x, float alpha, string txt);

void ga_win_txt_center(

int wid, float min_y, string txt);

142

CHAPTER 17. THE GAME LUA-TO-C API: WINDOWS 143

void ga_win_txt_center_at_bg(

int wid, float center_x, float min_y, string txt);

void ga_win_txt_box(

int wid, string txt, bool go_back_msg);

void ga_win_widget_small_list_start(

int wid, float min_y, float max_y,

float char_width, float char_height,

Vector txt_color, LIST);

int ga_win_widget_small_list_process_input(int wid);

string ga_win_widget_small_list_get_entry(int wid, int index);

void ga_win_widget_text_input_start(

int wid, float min_y, float char_width, float chat_height);

string ga_win_widget_text_input_process_input(int wid);

void ga_win_widget_mutable_text_box_start(

int wid, float min_x, float max_x, float min_y, float max_y,

float char_width, float char_height,

Vector txt_color, string init_str);

string ga_win_widget_mutable_text_box_get_text(int wid);

void ga_win_widget_mutable_text_box_end(int wid);

Vector ga_win_get_cursor_pos(int wid);

Vector ga_win_get_cursor_diff(int wid);

void ga_win_scroll(int wid, float scroll_x, float scroll_y);

Vector ga_win_mtos(int wid, float x, float y);

Vector ga_win_stom(int wid, float x, float y);

void ga_win_set_scroll_bounds(

int wid, float min_x, float min_y, float max_x, float max_y);

bool ga_win_key_pressed(int wid, string key);

bool ga_win_mouse_pressed(int wid, bool left);

bool ga_win_mouse_released(int wid, bool left);

bool ga_win_mouse_wheel_up(int wid);

bool ga_win_mouse_wheel_down(int wid);

bool ga_win_key_pressed_or_spammed(

int wid, string key, float init_wait, float subsequent_wait);

17.2 The Window ID (WID)

All of these API functions take the window ID (WID) of the current window.

CHAPTER 17. THE GAME LUA-TO-C API: WINDOWS 144

17.3 Setting Foreground and Background Params

void ga_win_set_back_params(

int wid, Vector color, float alpha1, float alpha2);

void ga_win_set_front_color(int wid, Vector color);

void ga_win_set_front_color_default(int wid);

void ga_win_set_char_size(int wid, float char_width, float char_height);

void ga_win_set_background(int wid, Vector color, float alpha);

void ga_win_set_background_default(int wid);

The function ga win set back params sets various parameters related to the
background. This is used to render behind text, for example. The argument
alpha2 should be more opaque than alpha1.

The function ga win set front color sets the “front color”, which is used as
the color of text for example. The function ga win set front color default sets
the front color to the default value (the value stored in the environment variable
“menu.text color”).

The function ga win set char size sets the character width and height of text.
A width of 1.0 means it is the width of the entire screen, and a height of 1.0
means it is a height of the entire screen.

The function ga win set background sets the background color and alpha.
The function ga win set background default sets the background to its default
color and alpha.

Here is an example of how these functions can be used:

function p.render(wid)

ga_win_set_front_color(wid, std.vec(1.0, 1.0, 1.0))

ga_win_set_back_params(wid, std.vec(0.0, 0.0, 0.0), 0.1, 0.3)

ga_win_set_background(wid, std.vec(0.0, 0.0, 0.0), 0.2);

end

17.4 Screen Elements

void ga_win_quad(

int wid, float min_x, float min_y, float max_x, float max_y, string tex);

void ga_win_quad_two(

int wid, float min_x, float min_y, float max_x, float max_y,

string tex1 string tex2, float frac);

void ga_win_quad_color(

int wid, float min_x, float min_y, float max_x, float max_y, Vector color);

The function ga win quad pastes a quad on the screen. 0.0 is the left of the
screen and 1.0 is the right. 0.0 is the bottom of the scree and 1.0 is the top.
This function takes a texture (string), and the texture will be displayed as a
rectangle on the screen.

The function ga win quad two is just like ga win quad except the bottom
half of the quad will have texture tex1 and the top half will have texture tex2.

CHAPTER 17. THE GAME LUA-TO-C API: WINDOWS 145

The number frac determines how much is tex1 verses tex2. If frac is 0.0, then
the quad will be entirely tex2. If frac is 1.0, then the quad will be entirely tex1.

The function ga win quad color is just like ga win quad except instead of
drawing a textured quad, it draws a quad that is just one solid color.

void ga_win_txt(

int wid, float min_x, float min_y, string txt);

void ga_win_txt_alpha_bg(

int wid, float min_x, float max_x, float alpha, string txt);

void ga_win_txt_center(

int wid, float min_y, string txt);

void ga_win_txt_center_at_bg(

int wid, float center_x, float min_y, string txt);

The function ga win txt puts text on the screen. The lower left hand corner
of the text is at the position (min x, min y). The character width and height is
set by the function ga win set char size.

The function ga win txt alpha bg is just like ga win txt except that it also
places a background directly behind the text being drawn. The alpha is for
the text itself. The background color and alpha2 will be used to make a quad
behind the text being drawn.

The function ga win txt center puts text whose x component is in the center
of the screen. The minimum y value of the text is given by min y.

While the function ga win txt center puts text whose x component is in the
center of the screen, the function ga win txt center at bg puts text whose x
center is given by the center x variable. Also, this function draws a background
behind the text in an analogous way that ga win txt alpha bg does.

17.5 Text Box

void ga_win_txt_box(

int wid, string txt, bool go_back_msg);

The function will render a “text box” in the center of the screen with the
given text. If ga back msg is true, then at the bottom of the screen there will
be a message asking of the player would like to “go back” by pressing either
Escape or F.

17.6 Small List Widget

void ga_win_widget_small_list_start(

int wid, float min_y, float max_y,

float char_width, float char_height,

Vector txt_color, LIST);

int ga_win_widget_small_list_process_input(int wid);

string ga_win_widget_small_list_get_entry(int wid, int index);

CHAPTER 17. THE GAME LUA-TO-C API: WINDOWS 146

A small list widget is a list of options that the player can choose from. These
are presented on the screen. All options show up on the screen (none are hidden,
and no scrolling is required).

The function ga win widget small list start function creates a small list wid-
get, and should probably be called in the on start function of a window lua
script. Here is an example (in a window script):

function p.on_start(wid)

local min_y = 0.3

local max_y = 0.7

local char_w = 0.03

local char_h = 0.06

local color = {x=0.0, y=0.5, z=0.5}

local options = {

"NEW GAME",

"LOAD GAME",

"SAVE GAME",

"PLAY TETRIS",

"EXIT"}

ga_win_widget_small_list_start(

wid, min_y, max_y, char_w, char_h,

color, options)

The function ga win widget small list process input allows the widget to
process input. The function returns a positive integer if and only if an item
has been selected from the list. For example, continuing our example from
above, if this function returns 2, then the selected option is ”LOAD GAME”.

Every entry in the list is given a number. The first entry is given number 1,
the next is given number 2, etc. The function ga win widget small list get entry
returns the name of the entry with the given number.

17.7 Text Input Widget

void ga_win_widget_text_input_start(

int wid, float min_y, float char_width, float chat_height);

string ga_win_widget_text_input_process_input(int wid);

The text input widget is a simple widget for the user to enter a line of text.
The function ga win widget text input start creates the text input widget.

Note that the min y argument specifies the minimum y value of the text input
widget.

The function ga win widget text input process input processes all keyboard
input to the widget. If this function returns a non-empty string, then that is
the string that was inputed (the user typed something and then pressed enter).

CHAPTER 17. THE GAME LUA-TO-C API: WINDOWS 147

17.8 Mutable Text Box Widget

void ga_win_widget_mutable_text_box_start(

int wid, float min_x, float max_x, float min_y, float max_y,

float char_width, float char_height,

Vector txt_color, string init_str);

string ga_win_widget_mutable_text_box_get_text(int wid);

void ga_win_widget_mutable_text_box_end(int wid);

A mutable text box is like a normal text box except the user can modify the
text.

The function ga win widget mutable text box start creates the mutable text
box widget (for the given window). An initial string is specified.

The function ga win widget mutable text box get text gets the text string
for the mutable text box.

The function ga win widget mutable text box end destroys the mutable text
box widget of the given window. That might naturally be called in the on end
function of the associated window script.

17.9 Cursor and Map Coordinates

Vector ga_win_get_cursor_pos(int wid);

Vector ga_win_get_cursor_diff(int wid);

void ga_win_scroll(int wid, float scroll_x, float scroll_y);

Vector ga_win_mtos(int wid, float x, float y);

Vector ga_win_stom(int wid, float x, float y);

void ga_win_set_scroll_bounds(

int wid, float min_x, float min_y, float max_x, float max_y);

Recall that (0.0, 0.0) is the lower left hand corner of the scree and (1.0, 1.0)
is the upper right hand corner.

The function ga win get cursor pos gets the position of the cursor. Note that
it is up to the user to render the cursor itself (probably by calling ga win quad).

The function ga win get cursor diff gets the difference in the cursor’s posi-
tion between this update and the previous update.

We want to encourage having windows which the user can scroll through.
Although the “screen coordinates” are always between (0.0,0.0) and (1.0,1.0) the
virtual coordinates (or “map coordinates”) can be in any range. Note that all
window rendering API functions use screen coordinates instead of map coordi-
nates. For map coordinates, we provide a minimal set of functions for converting
back and forth between screen coordinates and map coordinates. The function
ga win set scroll bounds sets the min and max map coordinates for the screen.
For example, calling

ga_win_set_scroll_bounds(

wid, 3.0, 3.0, 5.0, 5.0);

CHAPTER 17. THE GAME LUA-TO-C API: WINDOWS 148

Will set the lower left screen location (0.0, 0.0) to be the map location (3.0,
3.0), and it will set the upper right screen location (1.0, 1.0) to be the map
location (5.0, 5.0).

Use ga win mtos to convert from map coordinates to screen coordinates. Use
ga win stom to convert from screen coordinates to map coordinates.

17.10 Keyboard and Mouse Input

bool ga_win_key_pressed(int wid, string key);

bool ga_win_mouse_pressed(int wid, bool left);

bool ga_win_mouse_released(int wid, bool left);

bool ga_win_mouse_wheel_up(int wid);

bool ga_win_mouse_wheel_down(int wid);

bool ga_win_key_pressed_or_spammed(

int wid, string key, float init_wait, float subsequent_wait);

The functions ga win key pressed return whether a given key has been pressed
during this update phase. Here are the valid key strings:

"A" through "Z"

"0" through "9"

"F1" through "F12"

"ESC"

"ENTER"

"SPACE"

"LEFT"

"RIGHT"

"/"

The functions ga win mouse pressed and ga win mouse released return whether
a mouse button (left or right) was pressed or released.

The function ga win mouse wheel up returns whether on not the mouse
wheel was scrolled up (at least once). The function ga win mouse wheel down
is the same except for scrolling down.

The function ga win key pressed or spammed is just a helper function. As-
suming the user is holding down a key, the function returns true after init wait
many seconds since the key was pressed. Then, it returns true once each subse-
quent wait many seconds afterwards.

Chapter 18

Other Parts of Packages

At this point we have described all the folders inside a package. However, there
are also the following files in the package’s folder:

� binds.txt

� dependencies.txt

� globals.txt

� light params.txt

In this chapter we will describe these files.

18.1 binds.txt

The file binds.txt specifies what happens by default when players press and
release keys and mouse buttons. The way the input system works is that “input
events” are bound to “actions”. The file binds.txt declares actions and the input
event that by default binds to that action.

Actions have a primary and a secondary command. Most input events are
of type “downup”, which means that when the associated key is pressed, then
primary command of the associated action is executed. When the key is released,
the secondary command of the associated action is executed. Suppose the file
binds.txt is as follows:

PACKAGE_JUMP SPACE.downup "" "game_input jump ""

The first “” means that the command has the empty string as a “nickname”.
The nickname of an action can be helpful for when the user wants to rebind
actions. Note that the player could, for example, bind E.downup to the PACK-
AGE JUMP action. Then when the player presses E the player will jump.

The “game input jump” is the primary command of the PACKAGE JUMP
action. So when the space bar is pressed, this command is executed. Note that

149

CHAPTER 18. OTHER PARTS OF PACKAGES 150

the game input jump command results in the top.game input function being
called with “jump” as the string argument. The secondary command of the
PACKAGE JUMP action is the empty string.

To summarize, the syntax of a line in the binds.txt file is the following:

PACKAGE_ACTION_NAME INPUT_EVENT NICKNAME PRIMARY_CMD SECONDARY_CMD

Let us give another example. Consider the action of moving forward, which
is usually bound to the W key. The PACKAGE ACTION NAME might be
something like “PACKAGE MOVE FORWARD”. Note: all action names de-
clared in binds.txt must start with “PACKAGE ”. Next, the INPUT EVENT
would be “w.downup”. The NICKNAME could be anything, so let us set it to
be “”. We can have the primary command be

"game_input \"move forward start\""

(including the surrounding quotation marks). So when the W key is pressed,
the function top.game input will be given the string “move forward start”.

We can have the secondary command be

"game_input \"move forward end\""

So when the W key is released, the function top.game input will be given the
string “move forward end”.

18.2 dependencies.txt

This is described in Section 1.2.

18.3 globals.txt

You can read how to set and get (global) environment variables in Section 16.7.
All global variables that are loaded and saved (each time the game is loaded or
saved) must be declared in the file “globals.txt”. The type of the variable must
be specified. Optionally an initial value can be set.

Here is an example of what the globals.txt file might look like:

b invisible false

i health 100

f player_height 1.7

v initial_velocity 0.0 0.0 0.0

s favorite_color "blue"

s last_town

Here the last town variable does not have an initial value, so it will be
initialized to the empty string. Similarly a vector without an initial value will
be set to (0.0, 0.0, 0.0). A float without an initial value will be set to 0.0. An
int without an initial value will be set to 0. A bool without an initial value will
be set to false.

CHAPTER 18. OTHER PARTS OF PACKAGES 151

18.4 light params.txt

This file holds “lightweight parameters” associated to the package. These may
be read before the package is fully loaded. The following parameters should be
defined in this file:

preferred_engine_version

version

chunk_width

The engine has a version, such as “1.01.09”. The format for the engine
version is “major.minor.patch”. If the preferred engine version of the package
does not match the actual engine version, there may be a warning.

Every saved game stores the engine version number of the engine during the
last time the saved game was played. If either the major or minor changes (if
the engine version is different from the one in the save file), then when loading
the package a warning message will be displayed saying that the engine version
has changed since the list time that package was played. However if only the
patch number changes then there will be no such warning.

The package also has its own version which is specified here in the version
variable. Every saved game stores this package version number of the package
during the last time the saved game was played. The format for the version
should should be “major.minor.patch”. Again if major or minor change, then a
warning message will be displayed. However if only the patch number changes
then there will be no such warning.

The chunk width specifies the width of each chunk. This must be an integer
between 2 and 16 inclusive.

Here is what light params.txt might look like:

preferred_engine_version = "1.01.09"

version = "1.01.09"

chunk_width = 16

